Skip to main content
Log in

Simplifying the Extended Clearance Concept Classification System (EC3S) to Guide Clearance Prediction in Drug Discovery

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The Extended Clearance Concept Classification System was established as a development-stage tool to provide a framework for identifying fundamental mechanism(s) governing drug disposition in humans. In the present study, the applicability of the EC3S in drug discovery has been investigated. In its current format, the EC3S relies on low-throughput hepatocyte uptake data, which are not frequently generated in a discovery setting.

Methods

A relationship between hepatocyte uptake clearance and MDCK permeability was first established along with intrinsic clearance from human liver microsomes. The performance of this approach was examined by categorizing 64 drugs into EC3S classes and comparing the predicted major elimination pathway(s) to that observed in humans. As an extension of the work, the ability of the simplified EC3S to predict human systemic clearance based on intrinsic clearance generated using in-vitro metabolic systems was evaluated.

Results

The assessment enabled the use of MDCK permeability and unscaled unbound intrinsic clearance to generate cut-off criteria to categorize compounds into four EC3S classes: Class 12ab, 2cd, 34ab, and 34cd, with major elimination mechanism(s) assigned to each class. The predictivity analysis suggested that systemic clearance could generally be predicted within threefold for EC3S class 12ab and 34ab compounds. For classes 2cd and 34cd, systemic clearance was poorly predicted using in-vitro systems explored in this study.

Conclusion

Collectively, our simplified classification approach is expected to facilitate the identification of mechanism(s) involved in drug elimination, faster resolution of in-vitro to in-vivo disconnects, and better design of mechanistic pharmacokinetic studies in drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

AFE:

Average fold error

AAFE:

Absolute average fold error

AO:

Aldehyde oxidase

BSA:

Bovine serum albumin

BCS:

Biopharmaceutical classification system

BDDCS:

Biopharmaceutics Drug Disposition Classification System

CES:

Carboxylesterase

CL:

Clearance

CLint :

Intrinsic clearance

CLhep :

Hepatic clearance

CYP:

Cytochrome P450

DMEM:

Dulbecco's Modified Eagle Medium

ECCS:

Extended Clearance Classification System

EC3S:

Extended Clearance Concept Classification System

ECM:

Extended Clearance Model

FBS:

Fetal bovine serum

FMO:

Flavin-containing monooxygenases

fuhep :

Fraction unbound in hepatocyte incubation

fuinc :

Fraction unbound in incubation

fumic :

Fraction unbound in microsomal incubation

fup :

Fraction unbound in plasma

HBSS:

Hank’s buffered salt solution

HHep:

Human hepatocytes

HLM:

Human liver microsomes

IVIVE:

In-vitro to –in-vivo extrapolation

MAO:

Monoamine oxidase

MDCK:

Madin-Darby canine kidney

MDCK-LE:

Low efflux MDCK cell line

Papp :

Apparent passive permeability

PSinf ,pass :

Passive sinusoidal hepatic uptake

QH :

Hepatic blood flow

Rb :

Blood to plasma ratio

RED:

Rapid equilibrium dialysis

SULT:

Sulfotransferase

UGT:

UDP-glucuronosyltransferase

XO:

Xanthine oxidase

References

  1. Dressman JB, Amidon GL, Fleisher D. Absorption potential: estimating the fraction absorbed for orally administered compounds. J Pharm Sci. 1985;74(5):588–9.

    Article  CAS  PubMed  Google Scholar 

  2. Macheras PE, Symillides MY. Toward a quantitative approach for the prediction of the fraction of dose absorbed using the absorption potential concept. Biopharm Drug Dispos. 1989;10(1):43–53.

    Article  CAS  PubMed  Google Scholar 

  3. Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.

    Article  CAS  PubMed  Google Scholar 

  4. Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22(1):11–23.

    Article  CAS  PubMed  Google Scholar 

  5. Rinaki E, Valsami G, Macheras P. Quantitative biopharmaceutics classification system: the central role of dose/solubility ratio. Pharm Res. 2003;20(12):1917–25.

    Article  CAS  PubMed  Google Scholar 

  6. Varma MV, Steyn SJ, Allerton C, El-Kattan AF. Predicting clearance mechanism in drug discovery: extended clearance classification system (ECCS). Pharm Res. 2015;32(12):3785–802.

    Article  CAS  PubMed  Google Scholar 

  7. Camenisch GP. Drug disposition classification systems in discovery and development: a comparative review of the BDDCS. ECCS and ECCCS Concepts Pharm Res. 2016;33(11):2583–93.

    CAS  PubMed  Google Scholar 

  8. Kunze A, Poller B, Huwyler J, Camenisch G. Application of the extended clearance concept classification system (ECCCS) to predict the victim drug-drug interaction potential of statins. Drug Metab Pers Ther. 2015;30(3):175–88.

    CAS  PubMed  Google Scholar 

  9. Riede J, Kunze A, Huwyler J, Poller B, Umehara K. The extended clearance model and its use for the interpretation of hepatobiliary elimination data. ADMET. 2015;3(1):1–14.

    Google Scholar 

  10. Obach RS. The prediction of human clearance from hepatic microsomal metabolism data. Curr Opin Drug Discov Devel. 2001;4(1):36–44.

    CAS  PubMed  Google Scholar 

  11. Pang KS, Rowland M. Hepatic clearance of drugs. I. Theoretical considerations of a "well-stirred" model and a "parallel tube" model. Influence of hepatic blood flow, plasma and blood cell binding, and the hepatocellular enzymatic activity on hepatic drug clearance. J Pharmacokinet Biopharm. 1977;5(6):625–653.

  12. Camenisch G, Umehara K. Predicting human hepatic clearance from in vitro drug metabolism and transport data: a scientific and pharmaceutical perspective for assessing drug-drug interactions. Biopharm Drug Dispos. 2012;33(4):179–94.

    Article  CAS  PubMed  Google Scholar 

  13. Chao P, Uss AS, Cheng KC. Use of intrinsic clearance for prediction of human hepatic clearance. Expert Opin Drug Metab Toxicol. 2010;6(2):189–98.

    Article  CAS  PubMed  Google Scholar 

  14. Riede J, Poller B, Umehara K, Huwyler J, Camenisch G. New IVIVE method for the prediction of total human clearance and relative elimination pathway contributions from in vitro hepatocyte and microsome data. Eur J Pharm Sci. 2016;86:96–102.

    Article  CAS  PubMed  Google Scholar 

  15. Shitara Y, Sato H, Sugiyama Y. Evaluation of drug-drug interaction in the hepatobiliary and renal transport of drugs. Annu Rev Pharmacol Toxicol. 2005;45:689–723.

    Article  CAS  PubMed  Google Scholar 

  16. Umehara K, Camenisch G. Novel in vitro-in vivo extrapolation (IVIVE) method to predict hepatic organ clearance in rat. Pharm Res. 2012;29(2):603–17.

    Article  CAS  PubMed  Google Scholar 

  17. Dickson CJ, Hornak V, Bednarczyk D, Duca JS. Using membrane partitioning simulations to predict permeability of forty-nine drug-like molecules. J Chem Inf Model. 2019;59(1):236–44.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang H, Gao N, Tian X, Liu T, Fang Y, Zhou J, Wen Q, Xu B, Qi B, Gao J, Li H, Jia L, Qiao Q. Content and activity of human liver microsomal protein and prediction of individual hepatic clearance in vivo. Scientific Reports. 2015;5(1).

  19. Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10(7):1093–5.

    Article  CAS  PubMed  Google Scholar 

  20. Austin RP, Barton P, Cockroft SL, Wenlock MC, Riley RJ. The influence of nonspecific microsomal binding on apparent intrinsic clearance, and its prediction from physicochemical properties. Drug Metab Dispos. 2002;30(12):1497–503.

    Article  CAS  PubMed  Google Scholar 

  21. Kilford PJ, Gertz M, Houston JB, Galetin A. Hepatocellular binding of drugs: correction for unbound fraction in hepatocyte incubations using microsomal binding or drug lipophilicity data. Drug Metab Dispos. 2008;36(7):1194–7.

    Article  CAS  PubMed  Google Scholar 

  22. Riede J, Poller B, Huwyler J, Camenisch G. Assessing the risk of drug-induced cholestasis using unbound intrahepatic concentrations. Drug Metab Dispos. 2017;45(5):523–31.

    Article  CAS  PubMed  Google Scholar 

  23. Hayton WL, Vlahov V, Bacracheva N, Viachki I, Portmann R, Muirhead G, Stoeckel K, Weidekamm E. Pharmacokinetics and biliary concentrations of fleroxacin in cholecystectomized patients. Antimicrob Agents Chemother. 1990;34(12):2375–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. ZEBETA® Drug label. 2007.

  25. Saito Y. Pitavastatin: an overview. Atheroscler Suppl. 2011;12(3):271–6.

    Article  CAS  PubMed  Google Scholar 

  26. AVELOX® Drug label. 2016.

  27. Wienkers LC, Heath TG. Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov. 2005;4(10):825–33.

    Article  CAS  PubMed  Google Scholar 

  28. Benet LZ. Predicting drug disposition via application of a Biopharmaceutics Drug Disposition Classification System. Basic Clin Pharmacol Toxicol. 2010;106(3):162–7.

    Article  CAS  PubMed  Google Scholar 

  29. Benet LZ. The role of BCS (biopharmaceutics classification system) and BDDCS (biopharmaceutics drug disposition classification system) in drug development. J Pharm Sci. 2013;102(1):34–42.

    Article  CAS  PubMed  Google Scholar 

  30. Balimane PV, Chong S. Cell culture-based models for intestinal permeability: a critique. Drug Discov Today. 2005;10(5):335–43.

    Article  CAS  PubMed  Google Scholar 

  31. Li R, Bi YA, Lai Y, Sugano K, Steyn SJ, Trapa PE, Di L. Permeability comparison between hepatocyte and low efflux MDCKII cell monolayer. AAPS J. 2014;16(4):802–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Varma MV, Gardner I, Steyn SJ, Nkansah P, Rotter CJ, Whitney-Pickett C, Zhang H, Di L, Cram M, Fenner KS, El-Kattan AF. pH-Dependent solubility and permeability criteria for provisional biopharmaceutics classification (BCS and BDDCS) in early drug discovery. Mol Pharm. 2012;9(5):1199–212.

    Article  CAS  PubMed  Google Scholar 

  33. Kis O, Zastre JA, Hoque MT, Walmsley SL, Bendayan R. Role of drug efflux and uptake transporters in atazanavir intestinal permeability and drug-drug interactions. Pharm Res. 2013;30(4):1050–64.

    Article  CAS  PubMed  Google Scholar 

  34. TRACLEER® Drug label. 2017.

  35. AVANDIA® Drug label. 2008.

  36. REYATAZ® Drug label. 2011.

  37. Weber C, Gasser R, Hopfgartner G. Absorption, excretion, and metabolism of the endothelin receptor antagonist bosentan in healthy male subjects. Drug Metab Dispos. 1999;27(7):810–5.

    CAS  PubMed  Google Scholar 

  38. Cox PJ, Ryan DA, Hollis FJ, Harris AM, Miller AK, Vousden M, Cowley H. Absorption, disposition, and metabolism of rosiglitazone, a potent thiazolidinedione insulin sensitizer, in humans. Drug Metab Dispos. 2000;28(7):772–80.

    CAS  PubMed  Google Scholar 

  39. Nakashima M, Uematsu T, Kosuge K, Kusajima H, Ooie T, Masuda Y, Ishida R, Uchida H. Single- and multiple-dose pharmacokinetics of AM-1155, a new 6-fluoro-8-methoxy quinolone, in humans. Antimicrob Agents Chemother. 1995;39(12):2635–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Grasela DM. Clinical pharmacology of gatifloxacin, a new fluoroquinolone. Clin Infect Dis. 2000;31(Suppl 2):S51-58.

    Article  CAS  PubMed  Google Scholar 

  41. Goa KL, Noble S. Panipenem/betamipron. Drugs. 2003;63(9):913–925; discussion 926.

  42. Huth F, Domange N, Poller B, Vapurcuyan A, Durrwell A, Hanna ID, Faller B. Predicting oral absorption for compounds outside the rule of five property space. J Pharm Sci. 2021;110(6):2562–9.

    Article  CAS  PubMed  Google Scholar 

  43. Di L, Keefer C, Scott DO, Strelevitz TJ, Chang G, Bi YA, Lai Y, Duckworth J, Fenner K, Troutman MD, Obach RS. Mechanistic insights from comparing intrinsic clearance values between human liver microsomes and hepatocytes to guide drug design. Eur J Med Chem. 2012;57:441–8.

    Article  CAS  PubMed  Google Scholar 

  44. Pang KS, Han YR, Noh K, Lee PI, Rowland M. Hepatic clearance concepts and misconceptions: Why the well-stirred model is still used even though it is not physiologic reality? Biochem Pharmacol. 2019;169: 113596.

    Article  CAS  PubMed  Google Scholar 

  45. Benet LZ, Sodhi JK. Can in vitro-in vivo extrapolation be successful? recognizing the incorrect clearance assumptions. Clin Pharmacol Ther. 2022;111(5):1022–35.

    Article  PubMed  Google Scholar 

  46. Taniguchi-Takizawa T, Shimizu M, Kume T, Yamazaki H. Benzydamine N-oxygenation as an index for flavin-containing monooxygenase activity and benzydamine N-demethylation by cytochrome P450 enzymes in liver microsomes from rats, dogs, monkeys, and humans. Drug Metab Pharmacokinet. 2015;30(1):64–9.

    Article  CAS  PubMed  Google Scholar 

  47. Gantenbein M, Attolini L, Bruguerolle B, Villard PH, Puyoou F, Durand A, Lacarelle B, Hardwigsen J, Le-Treut YP. Oxidative metabolism of bupivacaine into pipecolylxylidine in humans is mainly catalyzed by CYP3A. Drug Metab Dispos. 2000;28(4):383–5.

    CAS  PubMed  Google Scholar 

  48. Bertz RJ, Granneman GR. Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet. 1997;32(3):210–58.

    Article  CAS  PubMed  Google Scholar 

  49. Mangold JB, Gu H, Rodriguez LC, Bonner J, Dickson J, Rordorf C. Pharmacokinetics and metabolism of lumiracoxib in healthy male subjects. Drug Metab Dispos. 2004;32(5):566–71.

    Article  CAS  PubMed  Google Scholar 

  50. Zientek M, Jiang Y, Youdim K, Obach RS. In vitro-in vivo correlation for intrinsic clearance for drugs metabolized by human aldehyde oxidase. Drug Metab Dispos. 2010;38(8):1322–7.

    Article  CAS  PubMed  Google Scholar 

  51. Bystricky B, Chau I. Patupilone in cancer treatment. Expert Opin Investig Drugs. 2011;20(1):107–17.

    Article  CAS  PubMed  Google Scholar 

  52. Weidekamm E, Portmann R, Suter K, Partos C, Dell D, Lucker PW. Single- and multiple-dose pharmacokinetics of fleroxacin, a trifluorinated quinolone, in humans. Antimicrob Agents Chemother. 1987;31(12):1909–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stass H, Kubitza D, Halabi A, Delesen H. Pharmacokinetics of moxifloxacin, a novel 8-methoxy-quinolone, in patients with renal dysfunction. Br J Clin Pharmacol. 2002;53(3):232–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McKeage MJ, Fong PC, Hong X, Flarakos J, Mangold J, Du Y, Tanaka C, Schran H. Mass balance, excretion and metabolism of [(1)(4)C] ASA404 in cancer patients in a phase I trial. Cancer Chemother Pharmacol. 2012;69(5):1145–54.

    Article  CAS  PubMed  Google Scholar 

  55. Bergan T. Comparative pharmacokinetics of cefazolin, cephalothin, cephacetril, and cephapirine after intravenous administration. Chemotherapy. 1977;23(6):389–404.

    Article  CAS  PubMed  Google Scholar 

  56. Borin MT, Peters GR, Smith TC. Pharmacokinetics and dose proportionality of cefmetazole in healthy young and elderly volunteers. Antimicrob Agents Chemother. 1990;34(10):1944–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lenfant B, Namour F, Logeais C, Coussediere D, Rivault O, Bryskier A, Surjus A. Pharmacokinetics of cefodizime following single doses of 0.5, 1.0, 2.0, and 3.0 grams administered intravenously to healthy volunteers. Antimicrob Agents Chemother. 1995;39(9):2037–2041.

  58. Shimizu K. Cefoperazone: absorption, excretion, distribution, and metabolism. Clin Ther. 1980;3(Spec Issue):60–79.

  59. Brogard JM, Jehl F, Adloff M, Blickle JF, Monteil H. High hepatic excretion in humans of cefpiramide, a new cephalosporin. Antimicrob Agents Chemother. 1988;32(9):1360–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Peterson LR, Gerding DN, Van Etta LL, Eckfeldt JH, Larson TA. Pharmacokinetics, protein binding, and extravascular distribution of ceftizoxime in normal subjects. Antimicrob Agents Chemother. 1982;22(5):878–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gilissen RA, Ferrari L, Barnaby RJ, Kajbaf M. Human hepatic metabolism of a novel 2-carboxyindole glycine antagonist for stroke: in vitro-in vivo correlations. Xenobiotica. 2000;30(9):843–56.

    Article  CAS  PubMed  Google Scholar 

  62. Grime K, Paine SW. Species differences in biliary clearance and possible relevance of hepatic uptake and efflux transporters involvement. Drug Metab Dispos. 2013;41(2):372–8.

    Article  CAS  PubMed  Google Scholar 

  63. Voigt R, Schroder S, Peiker G. Pharmacokinetic studies of azlocillin and piperacillin during late pregnancy. Chemotherapy. 1985;31(6):417–24.

    Article  CAS  PubMed  Google Scholar 

  64. Dieterle W, Faigle JW, Mory H, Richter WJ, Theobald W. Biotransformation and pharmacokinetics of sulfinpyrazone (Anturan) in man. Eur J Clin Pharmacol. 1975;9(2–3):135–45.

    Article  CAS  PubMed  Google Scholar 

  65. Pahlman I, Edholm M, Kankaanranta S, Odell M. Pharmacokinetics of Susalimod, a Highly Biliary-excreted Sulphasalazine Analogue, in Various Species. Nonpredictable Human Clearance by Allometric Scaling. Journal of Pharmacy and Pharmacology. 1998;4(10):493–498.

  66. He H, Tran P, Yin H, Smith H, Batard Y, Wang L, Einolf H, Gu H, Mangold JB, Fischer V, Howard D. Absorption, metabolism, and excretion of [14C]vildagliptin, a novel dipeptidyl peptidase 4 inhibitor, in humans. Drug Metab Dispos. 2009;37(3):536–44.

    Article  CAS  PubMed  Google Scholar 

  67. Dalvie D, Zhang C, Chen W, Smolarek T, Obach RS, Loi CM. Cross-species comparison of the metabolism and excretion of zoniporide: contribution of aldehyde oxidase to interspecies differences. Drug Metab Dispos. 2010;38(4):641–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Drs. Gian Camenisch and Bernard Faller for their constructive critique of various aspects of this article. We would also like to thank Gaelle Chenal, PhongHung Nguyen, Gaurab KC, Markus Trunzer, and Linda Xiao for their contribution in in-vitro assays. Authors would also like to acknowledge Dr. Rowan Stringer for his help in the data compilation.

Author information

Authors and Affiliations

Authors

Contributions

Participated in research design: Patel, Riede, Poller.

Conducted experiments: Patel, Riede.

Performed data analysis: Riede, Patel, Deshmukh.

Wrote or contributed to the writing of the manuscript: Patel, Riede, Bednarczyk, Deshmukh.

Corresponding author

Correspondence to Sujal V. Deshmukh.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest for this work beyond employment noted in the affiliations.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 223 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, M., Riede, J., Bednarczyk, D. et al. Simplifying the Extended Clearance Concept Classification System (EC3S) to Guide Clearance Prediction in Drug Discovery. Pharm Res 40, 937–949 (2023). https://doi.org/10.1007/s11095-023-03482-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03482-4

Keywords

Navigation