Skip to main content

Advertisement

Log in

Optimized Cationic Lipid-assisted Nanoparticle for Delivering CpG Oligodeoxynucleotides to Treat Hepatitis B Virus Infection

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Hepatitis B virus (HBV) infection is such a global health problem that hundreds of millions of people are HBV carriers. Current anti-viral agents can inhibit HBV replication, but can hardly eradicate HBV. Cytosine-phosphate-guanosine (CpG) oligodeoxynucleotides (ODNs) are an adjuvant that can activate plasmacytoid dendritic cells (pDCs) and conventional dendritic cells (cDCs) to induce therapeutic immunity for HBV eradication. However, efficient delivery of CpG ODNs into pDCs and cDCs remains a challenge. In this study, we constructed a series of cationic lipid-assisted nanoparticles (CLANs) using different cationic lipids to screen an optimal nanoparticle for delivering CpG ODNs into pDCs and cDCs.

Methods

We constructed different CLANCpG using six cationic lipids and analyzed the cellular uptake of different CLANCpG by pDCs and cDCs in vitro and in vivo, and further analyzed the efficiency of different CLANCpG for activating pDCs and cDCs in both wild type mice and HBV-carrier mice.

Results

We found that CLAN fabricated with 1,2-Dioleoyl-3-trimethylammonium propane (DOTAP) showed the highest efficiency for delivering CpG ODNs into pDCs and cDCs, resulting in strong therapeutic immunity in HBV-carrier mice. By using CLANCpG as an immune adjuvant in combination with the injection of recombinant hepatitis B surface antigen (rHBsAg), HBV was successfully eradicated and the chronic liver inflammation in HBV-carrier mice was reduced.

Conclusion

We screened an optimized CLAN fabricated with DOTAP for efficient delivery of CpG ODNs to pDCs and cDCs, which can act as a therapeutic vaccine adjuvant for treating HBV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

DATA AVAILABILITY

All data generated or analyzed during this study are included in this published article and its supplementary information files, or are available from the corresponding authors on reasonable request.

Abbreviations

AL6:

1,2-Dilauroyl-sn-glycero-3-ethylphosphocholine

AL7:

1,2-Dioleoyl-sn-glycero-3-ethylphosphocholine

ALT:

Alanine aminotransferase

anti-HBs:

Hepatitis B surface antibody

AST:

Aspartate transaminase

BHEM-Chol:

N, N-Bis(2-Hydroxyethyl)-N-methyl-N-(2-cholesteryoxycarbonyl-aminoethyl) ammonium bromide

BMDCs:

Bone marrow-derived dendritic cells

CL3:

Cholesterol lipid # 3, Cholest-5-en-3-ol (3β)-, [2-[bis(2-aminoethyl) amino] ethyl] carbamate

CL7:

Cholesterol lipid # 7, N-[6-(cholest-5-en-3β-yloxycarbonylamino) hexyl]-pyridinium chloride

CLAN:

Cationic lipid-assisted nanoparticle

CLSM:

Confocal laser scanning microscopy

CpG:

Cytosine-phosphate-guanosine

Cy5-CpG:

Cy5-labeled Cytosine-phosphate-guanosine

DCs:

Dendritic cells

DOTAP:

1,2-Dioleoyl-3-trimethylammonium propane

ELISA:

Enzyme-linked immunosorbent assay

FBS:

Fetal bovine serum

H&E:

Hematoxylin and eosin

HBcAg:

Hepatitis B core antigen

HBV:

Hepatitis B virus

HBsAg:

Hepatitis B surface antigen

IFN:

Interferon

MFI:

Mean fluorescence intensity

NK cell:

Natural killer cell

ODNs:

Oligodeoxynucleotides

PBS:

Phosphate buffer saline

pDCs:

Plasmacytoid dendritic cells

PEG5K-b-PLGA10K :

Poly(ethylene glycol)5 K-block-poly(lactic-co-glycolic acid)10 K

PLGA:

Poly(lactic-co-glycolic acid)

rAAV:

Recombinant adeno-associated viruses

rHBsAg:

Recombinant hepatitis B surface antigen

RT-PCR:

Real-time PCR

TBIL:

Total bilirubin

TLR9:

Toll-like receptor 9

References

  1. Revill PA, Chisari FV, Block JM, Dandri M, Gehring AJ, Guo H, Hu J, Kramvis A, Lampertico P, Janssen HLA, Levrero M, Li W, Liang TJ, Lim S-G, Lu F, Penicaud MC, Tavis JE, Thimme R, Zoulim F, Arbuthnot P, Boonstra A, Chang K-M, Chen P-J, Glebe D, Guidotti LG, Fellay J, Ferrari C, Jansen L, Lau DTY, Lok AS, Maini MK, Mason W, Matthews G, Paraskevis D, Petersen J, Rehermann B, Shin E-C, Thompson A, van Bömmel F, Wang F-S, Watashi K, Yang H-C, Yuan Z, Yuen M-F, Block T, Miller V, Protzer U, Bréchot C, Locarnini S, Peters MG, Schinazi RF. A global scientific strategy to cure hepatitis B. Lancet Gastroenterol Hepatol. 2019;4(7):545–58.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Smalls DJ, Kiger RE, Norris LB, Bennett CL, Love BL. Hepatitis B virus reactivation: risk factors and current management strategies. Pharmacotherapy. 2019;39(12):1190–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tang LSY, Covert E, Wilson E, Kottilil S. Chronic hepatitis B infection: A review. JAMA. 2018;319(17):1802–13.

    Article  CAS  PubMed  Google Scholar 

  4. Dembek C, Protzer U, Roggendorf M. Overcoming immune tolerance in chronic hepatitis B by therapeutic vaccination. Curr Opin Virol. 2018;30:58–67.

    Article  CAS  PubMed  Google Scholar 

  5. Cargill T, Barnes E. Therapeutic vaccination for treatment of chronic hepatitis B. Clin Exp Immunol. 2021;205(2):106–18.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gehring AJ, Protzer U. Targeting innate and adaptive immune responses to cure chronic HBV infection. Gastroenterology. 2019;156(2):325–37.

    Article  CAS  PubMed  Google Scholar 

  7. Li HJ, Zhai NC, Song HX, Yang Y, Cui A, Li TY, Tu ZK. The role of immune cells in chronic HBV infection. J Clin Transl Hepatol. 2015;3(4):277–83.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fisicaro P, Barili V, Rossi M, Montali I, Vecchi A, Acerbi G, Laccabue D, Zecca A, Penna A, Missale G, Ferrari C, Boni C. Pathogenetic mechanisms of T cell dysfunction in chronic HBV infection and related therapeutic approaches. Front Immunol. 2020;11:849–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Soema PC, Rosendahl Huber SK, Willems GJ, Jiskoot W, Kersten GF, Amorij JP. Influenza T-cell epitope-loaded virosomes adjuvanted with CpG as a potential influenza vaccine. Pharm Res. 2015;32(4):1505–15.

    Article  CAS  PubMed  Google Scholar 

  10. Wang W, Zhou X, Bian Y, Wang S, Chai Q, Guo Z, Wang Z, Zhu P, Peng H, Yan X, Li W, Fu YX, Zhu M. Dual-targeting nanoparticle vaccine elicits a therapeutic antibody response against chronic hepatitis B. Nat Nanotechnol. 2020;15(5):406–16.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nanishi E, Borriello F, O'Meara TR, McGrath ME, Saito Y, Haupt RE, Seo HS, van Haren SD, Cavazzoni CB, Brook B, Barman S, Chen J, Diray-Arce J, Doss-Gollin S, De Leon M, Prevost-Reilly A, Chew K, Menon M, Song K, Xu AZ, Caradonna TM, Feldman J, Hauser BM, Schmidt AG, Sherman AC, Baden LR, Ernst RK, Dillen C, Weston SM, Johnson RM, Hammond HL, Mayer R, Burke A, Bottazzi ME, Hotez PJ, Strych U, Chang A, Yu J, Sage PT, Barouch DH, Dhe-Paganon S, Zanoni I, Ozonoff A, Frieman MB, Levy O, Dowling DJ. An aluminum hydroxide:CpG adjuvant enhances protection elicited by a SARS-CoV-2 receptor-binding domain vaccine in aged mice. Sci Transl Med. 2021;14(629):eabj5305.

  12. Swiecki M, Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol. 2015;15(8):471–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Greene TT, Jo YR, Zuniga EI. Infection and cancer suppress pDC derived IFN-I. Curr Opin Immunol. 2020;66:114–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ye J, Chen J. Interferon and hepatitis B: Current and future perspectives. Front Immunol. 2021;12: 733364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li J, Ge J, Ren S, Zhou T, Sun Y, Sun H, Gu Y, Huang H, Xu Z, Chen X, Xu X, Zhuang X, Song C, Jia F, Xu A, Yin X, Du SX. Hepatitis B surface antigen (HBsAg) and core antigen (HBcAg) combine CpG oligodeoxynucletides as a novel therapeutic vaccine for chronic hepatitis B infection. Vaccine. 2015;33(35):4247–54.

    Article  CAS  PubMed  Google Scholar 

  16. Bian Y, Zhang Z, Sun Z, Zhao J, Zhu D, Wang Y, Fu S, Guo J, Liu L, Su L, Wang FS, Fu YX, Peng H. Vaccines targeting preS1 domain overcome immune tolerance in hepatitis B virus carrier mice. Hepatology. 2017;66(4):1067–82.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao H, Han Q, Yang A, Wang Y, Wang G, Lin A, Wang X, Yin C, Zhang J. CpG-C ODN M362 as an immunoadjuvant for HBV therapeutic vaccine reverses the systemic tolerance against HBV. Int J Biol Sci. 2022;18(1):154–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang H, Gao XD. Nanodelivery systems for enhancing the immunostimulatory effect of CpG oligodeoxynucleotides. Mater Sci Eng C. 2017;70(2):935–46.

    Article  CAS  Google Scholar 

  19. Xu CF, Iqbal S, Shen S, Luo YL, Yang X, Wang J. Development of “CLAN” nanomedicine for nucleic acid therapeutics. Small. 2019;15(16): e1900055.

    Article  PubMed  Google Scholar 

  20. Liu J, Li HJ, Luo YL, Chen YF, Fan YN, Du JZ, Wang J. Programmable delivery of immune adjuvant to tumor-infiltrating dendritic cells for cancer immunotherapy. Nano Lett. 2020;20(7):4882–9.

    Article  CAS  PubMed  Google Scholar 

  21. Hu Y, Lin L, Guo Z, Chen J, Maruyama A, Tian H, Chen X. In situ vaccination and gene-mediated PD-L1 blockade for enhanced tumor immunotherapy. Chin Chem Lett. 2021;32(5):1770–4.

    Article  CAS  Google Scholar 

  22. Song Y, Huang Y, Zhou F, Ding J, Zhou W. Macrophage-targeted nanomedicine for chronic diseases immunotherapy. Chin Chem Lett. 2021;1:45–60.

    Google Scholar 

  23. Herrmann VL, Hartmayer C, Planz O, Groettrup M. Cytotoxic T cell vaccination with PLGA microspheres interferes with influenza A virus replication in the lung and suppresses the infectious disease. J Control Release. 2015;216:121–31.

    Article  CAS  PubMed  Google Scholar 

  24. Zhao H, Zhao B, Wu L, Xiao H, Ding K, Zheng C, Song Q, Sun L, Wang L, Zhang Z. Amplified cancer immunotherapy of a surface-engineered antigenic microparticle vaccine by synergistically modulating tumor microenvironment. ACS Nano. 2019;13(11):12553–66.

    Article  CAS  PubMed  Google Scholar 

  25. Yue J, Pallares RM, Cole LE, Coughlin EE, Mirkin CA, Lee A, Odom TW. Smaller CpG-conjugated gold nanoconstructs achieve higher targeting specificity of immune activation. ACS Appl Mater Interfaces. 2018;10(26):21920–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu C, Nam J, Hong H, Xu Y, Moon JJ. Positron emission tomography-guided photodynamic therapy with biodegradable mesoporous silica nanoparticles for personalized cancer immunotherapy. ACS Nano. 2019;13(10):12148–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lv S, Wang J, Dou S, Yang X, Ni X, Sun R, Tian Z, Wei H. Nanoparticles encapsulating hepatitis B virus cytosine-phosphate-guanosine induce therapeutic immunity against HBV infection. Hepatology. 2014;59(2):385–94.

    Article  CAS  PubMed  Google Scholar 

  28. Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9(8):615–27.

    Article  CAS  PubMed  Google Scholar 

  29. Albanese A, Tang PS, Chan WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14:1–16.

    Article  CAS  PubMed  Google Scholar 

  30. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu Y, Cao ZT, Xu CF, Lu ZD, Luo YL, Wang J. Optimization of lipid-assisted nanoparticle for disturbing neutrophils-related inflammation. Biomaterials. 2018;172:92–104.

    Article  CAS  PubMed  Google Scholar 

  32. Li M, Fan YN, Chen ZY, Luo YL, Wang YC, Lian ZX, Xu CF, Wang J. Optimized nanoparticle-mediated delivery of CRISPR-Cas9 system for B cell intervention. Nano Res. 2018;11(12):6270–82.

    Article  CAS  Google Scholar 

  33. Shen S, Zhang Y, Chen KG, Luo YL, Wang J. Cationic polymeric nanoparticle delivering CCR2 siRNA to inflammatory monocytes for tumor microenvironment modification and cancer therapy. Mol Pharm. 2018;15(9):3642–53.

    Article  CAS  PubMed  Google Scholar 

  34. Xu C, Lu Z, Luo Y, Liu Y, Cao Z, Shen S, Li H, Liu J, Chen K, Chen Z, Yang X, Gu Z, Wang J. Targeting of NLRP3 inflammasome with gene editing for the amelioration of inflammatory diseases. Nat Commun. 2018;9(1):4092.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Garu A, Moku G, Gulla SK, Chaudhuri A. Genetic immunization with in vivo dendritic cell-targeting liposomal DNA vaccine carrier induces long-lasting antitumor immune response. Mol Ther. 2016;24(2):385–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, Meng M, Fritz D, Vascotto F, Hefesha H, Grunwitz C, Vormehr M, Husemann Y, Selmi A, Kuhn AN, Buck J, Derhovanessian E, Rae R, Attig S, Diekmann J, Jabulowsky RA, Heesch S, Hassel J, Langguth P, Grabbe S, Huber C, Tureci O, Sahin U. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016;534(7607):396–401.

    Article  PubMed  Google Scholar 

  37. J P Vigneron NO, M Fauquet, L Vergely, J C Bradley, M Basseville, P Lehn, and J M Lehn. Guanidinium-cholesterol cationic lipids: efficient vectors for the transfection of eukaryotic cells. Proc Natl Acad Sci USA. 1996;93(18):9682–9686.

  38. Medvedeva DA, Maslov MA, Serikov RN, Morozova NG, Serebrenikova GA, Sheglov DV, Latyshev AV, Vlassov VV, Zenkova MA. Novel cholesterol-based cationic lipids for gene delivery. J Med Chem. 2009;52(21):6558–68.

    Article  CAS  PubMed  Google Scholar 

  39. Yang XZ, Dou S, Sun TM, Mao CQ, Wang HX, Wang J. Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy. J Control Release. 2011;156(2):203–11.

    Article  CAS  PubMed  Google Scholar 

  40. Yang D, Liu L, Zhu D, Peng H, Su L, Fu YX, Zhang L. A mouse model for HBV immunotolerance and immunotherapy. Cell Mol Immunol. 2014;11(1):71–8.

    Article  CAS  PubMed  Google Scholar 

  41. Lou G, Anderluzzi G, Schmidt ST, Woods S, Gallorini S, Brazzoli M, Giusti F, Ferlenghi I, Johnson RN, Roberts CW, O’Hagan DT, Baudner BC, Perrie Y. Delivery of self-amplifying mRNA vaccines by cationic lipid nanoparticles: The impact of cationic lipid selection. J Control Release. 2020;325:370–9.

    Article  CAS  PubMed  Google Scholar 

  42. Schuch A, Hoh A, Thimme R. The role of natural killer cells and CD8(+) T cells in hepatitis B virus infection. Front Immunol. 2014;5:258–65.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gilliet M, Cao W, Liu YJ. Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol. 2008;8(8):594–606.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (82072048, 81901875, and 32071378), Guangdong Provincial Pearl River Talents Program (2017GC010713 and 2017GC010482), the Science and Technology Program of Guangzhou, China (202103030004), Guangdong Basic and Applied Basic Research Foundation (2022B1515020025, 2019A1515011878), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

J.W., C.-F.X. and X.-J.D. conceived the project, C.-F.X. and Y.-F.C. designed and conducted the experiments, performed the analysis and interpretations, and wrote the paper. Y.W. and Y.W. assisted the flow cytometry experiments, Y.-L.L. and Z.-D.L. provided help in designing the experiments and editing the manuscript. The manuscript has been read by all authors.

Corresponding authors

Correspondence to Xiao-Jiao Du or Cong-Fei Xu.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YF., Wang, Y., Wang, Y. et al. Optimized Cationic Lipid-assisted Nanoparticle for Delivering CpG Oligodeoxynucleotides to Treat Hepatitis B Virus Infection. Pharm Res 40, 145–156 (2023). https://doi.org/10.1007/s11095-022-03307-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03307-w

KEY WORDS

Navigation