Skip to main content
Log in

Characterization of Grinding-Induced Subvisible Particles and Free Radicals in a Freeze-Dried Monoclonal Antibody Formulation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purposes

The primary objectives of this study were to investigate the degradation mechanisms of freeze-dried monoclonal antibody (mAb) formulations under mechanical grinding, assess the sensitivity and suitability of various particle analysis techniques, analyze the structure of the collected subvisible particles (SbVPs), and analyze the antioxidant mechanism of methionine (Met) under degradation process to gain a thorough understanding of the phenomenon.

Methods

The freeze-dried mAb-X formulations underwent grinding, and the resultant SbVPs were characterized through visual inspection, flow imaging microscopy, dynamic light scattering, ultraviolet–visible spectroscopy, and size-exclusion high-performance liquid chromatography. We further evaluated the effect of different temperatures and the free radical scavenger Met on SbVP formation. The produced free radicals were detected using electron paramagnetic resonance, and Met S-oxide formation was detected using liquid chromatography–mass spectrometry. In addition, we analyzed the obtained SbVPs using capillary electrophoresis sodium dodecyl sulfate and Fourier transform infrared spectroscopy.

Results

Grinding leads to SbVP formation under high temperature and free radical formation. Free radicals produced during grinding require the participation of a macromolecule. Met could then bind to the produced free radicals, thus partially protecting mAb-X from degradation while itself undergoing oxidation to form Met(O). Sensitivity differences between different particle analysis techniques were evaluated, and the obtained SbVPs showed significant changes in secondary structure and the formation of covalent aggregates and fragments.

Conclusions

Met plays the role of an antioxidant in protecting macromolecules by quenching the free radicals produced during grinding. To thoroughly characterize SbVPs, multiple and orthogonal particle analysis techniques should be used, and if necessary, SbVPs should be processed by enrichment to accurately analyze primary and high order structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CD:

circular dichroism

CE-SDS:

capillary electrophoresis sodium dodecyl sulfate

DLS:

dynamic light scattering

EPR:

electron paramagnetic resonance

FIM:

flow imaging microscopy

FT-IR:

Fourier transform infrared spectroscopy

LC–MS:

liquid chromatography–mass spectrometry

mAb:

monoclonal antibody

Met:

methionine

Met(O):

methionine S-oxide

OD:

optical density

PES:

polyethylstyrene

SbVP:

subvisible particle

SE-HPLC:

size-exclusion high-performance liquid chromatography

TIC:

total ion chromatogram

UV–Vis:

ultraviolet–visible spectroscopy

References

  1. Strickley RG, Lambert WJ. A review of formulations of commercially available antibodies. J Pharm Sci. 2021;110:2590–608.

    Article  CAS  PubMed  Google Scholar 

  2. Pham NB, Meng WS. Protein aggregation and immunogenicity of biotherapeutics. Int J Pharm. 2020;585:119523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Paul M, Astier A. Mechanically-induced aggregation of the monoclonal antibody cetuximab. Ann Pharm Fr. 2009;67:340–52.

    Article  PubMed  Google Scholar 

  4. Kiese S, Papppenberger A, Friess W, Mahler HC. Shaken, not stirred: mechanical stress testing of an IgG1 antibody. J Pharm Sci. 2008;97:4347–66.

    Article  CAS  PubMed  Google Scholar 

  5. Al-Ghobashy MA, Mostafa MM, Abed HS, Fathalla FA, Salem MY. Correlation between dynamic light scattering and size exclusion high performance liquid chromatography for monitoring the effect of pH on stability of biopharmaceuticals. J Chromatogr B. 2017;1060:1–9.

    Article  CAS  Google Scholar 

  6. Das TK, Narhi LO, Sreedhara A, Menzen T, Grapentin C, Chou DK, Antochshuk V, Filipe V. Stress factors in mAb drug substance production processes: critical assessment of impact on product quality and control strategy. J Pharm Sci. 2020;109:116–33.

    Article  CAS  PubMed  Google Scholar 

  7. Gikanga B, Eisner DR, Ovadia R, Day ES, Stauch OB, Maa YF. Processing impact on monoclonal antibody drug products: protein subvisible particulate formation induced by grinding stress. PDA J Pharm Sci Technol. 2017;71:172–88.

    Article  CAS  PubMed  Google Scholar 

  8. Nayak A, Colandene J, Bradford V, Perkins M. Characterization of subvisible particle formation during the filling pump operation of a monoclonal antibody solution. J Pharm Sci. 2011;100:4198–204.

    Article  CAS  PubMed  Google Scholar 

  9. Duerkop M, Berger E, Dürauer A, Jungbauer A. Influence of cavitation and high shear stress on HSA aggregation behavior. Eng Life Sci. 2017;00:1–10.

    Google Scholar 

  10. Telikepalli SN, Kumru OS, Kalonia C, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB. Structural characterization of IgG1 mAb aggregates and particles generated under various stress conditions. J Pharm Sci. 2014;103:796–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tyagi AK, Randolph TW, Dong A, Maloney KM, Hitscherich C, Carpenter JF. IgG particle formation during filling pump operation: a case study of heterogeneous nucleation on stainless steel nanoparticles. J Pharm Sci. 2009;98:94–104.

    Article  CAS  PubMed  Google Scholar 

  12. Siska C, Harber P, Kerwin BA. Shocking data on parcel shipments of protein solutions. J Pharm Sci. 2020;109:690–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Telikepalli S, Kumru OS, Kim JAEH, Joshi SB, Berry KBO, Blake-haskins AW, et al. Characterization of the physical stability of a lyophilized IgG1 mAb after accelerated shipping-like stress. Pharm Biotechnol. 2015;104:495–507.

    CAS  Google Scholar 

  14. Singh SN, Kumar S, Bondar V, Wang N, Forcino R, Colandene J, Nesta D. Unexplored benefits of controlled ice nucleation: lyophilization of a highly concentrated monoclonal antibody solution. Int J Pharm. 2018;552:171–9.

    Article  CAS  PubMed  Google Scholar 

  15. Wang H, Zheng H, Wang Z, Bai H, Carpenter JF, Chen S, et al. Formation of protein sub-visible particles during vacuum degassing of etanercept solutions. Int J Biol Macromol. 2014;66:151–7.

    Article  CAS  PubMed  Google Scholar 

  16. Qian C, Wang G, Wang X, Barnard J, Gao J, Bao W. Formation of protein sub-visible particles during powder grinding of a monoclonal antibody. Eur J Pharm Biopharm. 2020;149:1–11.

    Article  CAS  PubMed  Google Scholar 

  17. Hawkins CL, Davies MJ. Generation and propagation of radical reactions on proteins. Biochim Biophys Acta. 2001;1504:196–219.

    Article  CAS  PubMed  Google Scholar 

  18. Dion MZ, Leiske D, Sharma VK, Zafra CLZ De, Salisbury CM. Mitigation of oxidation in therapeutic antibody formulations : A biochemical efficacy and safety evaluation of N -acetyl-tryptophan and L-methionine. Pharm Res 2018;35:222.

  19. Bommana R, Mozziconacci O, John Wang Y, Schöneich C. An efficient and rapid method to monitor the oxidative degradation of protein pharmaceuticals: probing tyrosine oxidation with fluorogenic derivatization. Pharm Res. 2017;34:1428–43.

    Article  CAS  PubMed  Google Scholar 

  20. Vass P, Hirsch E, Kóczián R, Démuth B, Farkas A, Fehér C, Szabó E, Németh Á, Andersen SK, Vigh T, Verreck G, Csontos I, Marosi G, Nagy ZK. Scaled-up production and tableting of grindable electrospun fibers containing a protein-type drug. Pharmaceutics. 2019;11:1–12.

    Article  Google Scholar 

  21. Vass P, Nagy ZK, Kóczián R, Fehér C, Démuth B, Szabó E, Andersen SK, Vigh T, Verreck G, Csontos I, Marosi G, Hirsch E. Continuous drying of a protein-type drug using scaled-up fiber formation with HP-β-CD matrix resulting in a directly compressible powder for tableting. Eur J Pharm Sci. 2020;141:105089.

    Article  CAS  PubMed  Google Scholar 

  22. Lee PW, Maia J, Pokorski JK. Milling solid proteins to enhance activity after melt- encapsulation. Int J Pharm. 2018;533:254–65.

    Article  Google Scholar 

  23. Etzl EE, Winter G, Engert J. Toward intradermal vaccination: preparation of powder formulations by collapse freeze-drying. Pharm Dev Technol. 2014;19:213–22.

    Article  CAS  PubMed  Google Scholar 

  24. Anamur C, Winter G, Engert J. Stability of collapse lyophilized influenza vaccine formulations. Int J Pharm. 2015;483:131–41.

    Article  CAS  PubMed  Google Scholar 

  25. Tantisripreecha C, Jaturanpinyo M, Panyarachun B, Sarisuta N. Development of delayed-release proliposomes tablets for oral protein drug delivery. Drug Dev Ind Pharm. 2012;38:718–27.

    Article  CAS  PubMed  Google Scholar 

  26. Wong CY, Martinez J, Carnagarin R, Dass CR. In-vitro evaluation of enteric coated insulin tablets containing absorption enhancer and enzyme inhibitor. J Pharm Pharmacol. 2017;69:285–94.

    Article  CAS  PubMed  Google Scholar 

  27. Maurer JM, Hofman S, Schellekens RCA, Tonnis WF, Dubois AOT, Woerdenbag HJ, Hinrichs WLJ, Kosterink JGW, Frijlink HW. Development and potential application of an oral ColoPulse infliximab tablet with colon specific release: a feasibility study. Int J Pharm. 2016;505:175–86.

    Article  CAS  PubMed  Google Scholar 

  28. Wei Y, Wang C, Jiang B, Sun CC, Middaugh CR. Developing biologics tablets: the effects of compression on the structure and stability of bovine serum albumin and lysozyme. Mol Pharm. 2019;16:1119–31.

    Article  CAS  PubMed  Google Scholar 

  29. Farinha S, Moura C, Afonso MD, Henriques J. Production of lysozyme-PLGA-loaded microparticles for controlled release using hot-melt extrusion. AAPS PharmSciTech. 2020;21:1–14.

    Article  Google Scholar 

  30. Rajkhowa R, Hu X, Tsuzuki T, Kaplan DL, Wang X. Structure and biodegradation mechanism of milled Bombyx mori silk particles. Biomacromolecules. 2012;13:2503–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kazemimostaghim M, Rajkhowa R, Patil K, Tsuzuki T, Wang X. Structure and characteristics of milled silk particles. Powder Technol. 2014;254:488–93.

    Article  CAS  Google Scholar 

  32. Picker KM. Influence of tableting on the enzymatic activity of different α-amylases using various excipients. Eur J Pharm Biopharm. 2002;53:181–5.

    Article  CAS  PubMed  Google Scholar 

  33. Klukkert M, Weert MVANDE, Fanø M, Rades T, Leopold CS. Influence of tableting on the conformation and thermal stability of trypsin as a model protein. J Pharm Sci. 2015;104:4314–21.

    Article  CAS  PubMed  Google Scholar 

  34. Lu Y, Wang C, Jiang B, Sun CC, Ph D, Hoag W, et al. Effects of compaction and storage conditions on stability of intravenous immunoglobulin – implication on developing oral tablets of biologics. Int J Pharm. 2021;604:120737.

    Article  CAS  PubMed  Google Scholar 

  35. Gareb B, Posthumus S, Beugeling M, Koopmans P, Touw DJ, Dijkstra G, Kosterink JGW, Frijlink HW. Towards the oral treatment of ileo-colonic inflammatory bowel disease with infliximab tablets: development and validation of the production process. Pharmaceutics. 2019;11:428.

    Article  CAS  PubMed Central  Google Scholar 

  36. Marschall C, Graf G, Witt M, Hauptmeier B, Friess W. Preparation of high concentration protein powder suspensions by milling of lyophilizates. Eur J Pharm Biopharm. 2021;166:75–86.

    Article  CAS  PubMed  Google Scholar 

  37. Le Gall M, Guéguen J, Séve B, Quillien L. Effects of grinding and thermal treatments on hydrolysis susceptibility of pea proteins (Pisum sativum L.). J Agric Food Chem. 2005;53:3057–64.

    Article  PubMed  Google Scholar 

  38. Gikanga B, Hui A, Maa YF. Mechanistic investigation on grinding-induced subvisible particle formation during mixing and filling of monoclonal antibody formulations. PDA J Pharm Sci Technol. 2018;72:117–33.

    Article  CAS  PubMed  Google Scholar 

  39. Fang W, Liu J, Zheng H, Shen B. Protein sub-visible particle and free radical formation of a freeze-dried monoclonal antibody formulation during dropping. J Pharm Sci. 2021;110:1625–34.

    Article  CAS  PubMed  Google Scholar 

  40. Koepf E, Eisele S, Schroeder R, Brezesinski G, Friess W. Notorious but not understood: how liquid-air interfacial stress triggers protein aggregation. Int J Pharm. 2018;537:202–12.

    Article  CAS  PubMed  Google Scholar 

  41. Koepf E, Schroeder R, Brezesinski G, Friess W. The film tells the story: physical-chemical characteristics of IgG at the liquid-air interface. Eur J Pharm Biopharm. 2017;119:396–407.

    Article  CAS  PubMed  Google Scholar 

  42. Gikanga B, Chen Y, Stauch OB, Maa YF. Mixing monoclonal antibody formulations using bottom-mounted mixers: impact of mechanism and design on drug product quality. PDA J Pharm Sci Technol. 2015;69:284–96.

    Article  CAS  PubMed  Google Scholar 

  43. Fang WJ, Liu JW, Barnard J, Wang H, Qian YC, Xu J. Effects of secondary package on freeze-dried biopharmaceutical formulation stability during dropping. J Pharm Sci. 2021;110:2916–24.

    Article  CAS  PubMed  Google Scholar 

  44. Fang WJ, Liu JW, Gao H, Qian YC, Gao JQ, Wang H. Secondary packages cannot protect liquid biopharmaceutical formulations from dropping-induced degradation. Pharm Res. 2021;38:1397–404.

    Article  CAS  PubMed  Google Scholar 

  45. Yoneda S, Niederleitner B, Wiggenhorn M, Koga H, Totoki S, Krayukhina E, Friess W, Uchiyama S. Quantitative laser diffraction for quantification of protein aggregates: comparison with resonant mass measurement, nanoparticle tracking analysis, flow imaging, and light obscuration. J Pharm Sci. 2019;108:755–62.

    Article  CAS  PubMed  Google Scholar 

  46. Zölls S, Weinbuch D, Wiggenhorn M, Winter G, Friess W, Jiskoot W, Hawe A. Flow imaging microscopy for protein particle analysis — a comparative evaluation of four different analytical instruments. Am Assoc Pharm Sci. 2013;15:1200–11.

    Google Scholar 

  47. Huang C, Sharma D, Oma P, Krishnamurthy R. Quantitation of protein particles in parenteral solutions using micro-flow imaging. J Pharm Sci. 2009;98:3058–71.

    Article  CAS  PubMed  Google Scholar 

  48. Werk T, Volkin DB, Mahler H. Effect of solution properties on the counting and sizing of subvisible particle standards as measured by light obscuration and digital imaging methods. Eur J Pharm Sci. 2014;53:95–108.

    Article  CAS  PubMed  Google Scholar 

  49. Wilson GA, Manning MC. Flow imaging : moving toward best practices for subvisible particle quantitation in protein products. J Pharm Sci. 2013;102:1133–4.

    Article  CAS  PubMed  Google Scholar 

  50. Vollrath I, Mathaes R, Sediq AS, Jere D, Jörg S, Huwyler J, Mahler HC. Subvisible particulate contamination in cell therapy products—can we distinguish? J Pharm Sci. 2020;109:216–9.

    Article  CAS  PubMed  Google Scholar 

  51. Weinbuch D, Zölls S, Wiggenhorn M, Friess W, Winter G, Jiskoot WHA. Micro–flow imaging and resonant mass measurement (archimedes)– complementary methods to quantitatively differentiate protein particles and silicone oil droplets. J Pharm Sci. 2013;102:2152–65.

    Article  CAS  PubMed  Google Scholar 

  52. Kiyoshi M, Shibata H, Harazono A, Torisu T, Maruno T, Akimaru M, Asano Y, Hirokawa M, Ikemoto K, Itakura Y, Iwura T, Kikitsu A, Kumagai T, Mori N, Murase H, Nishimura H, Oda A, Ogawa T, Ojima T, et al. Collaborative study for analysis of subvisible particles using flow imaging and light obscuration : experiences in Japanese biopharmaceutical consortium. J Pharm Sci. 2018;108:832–41.

    Article  PubMed  Google Scholar 

  53. Mathaes R, Manning MC, Winter G, Engert J, Wilson GA. Shape characterization of subvisible particles using dynamic imaging analysis. J Pharm Sci. 2020;109:375–9.

    Article  CAS  PubMed  Google Scholar 

  54. Psimadas D, Georgoulias P, Valotassiou V, Loudos G. Subvisible particle counting provides a sensitive method of detecting and quantifying aggregation of monoclonal antibody caused by freeze-thawing: insights into the roles of particles in the protein aggregation pathway. J Pharm Sci. 2012;101:2271–80.

    Article  CAS  PubMed  Google Scholar 

  55. Den Engelsman J, Garidel P, Smulders R, Koll H, Smith B, Bassarab S, et al. Strategies for the assessment of protein aggregates in pharmaceutical biotech product development. Pharm Res. 2011;28:920–33.

    Article  Google Scholar 

  56. Wolfrum S, Weichsel U, Siedler M, Weber C, Peukert W. Monitoring of flow-induced aggregation and conformational change of monoclonal antibodies. Chemie Ing Tech. 2017;89:987–94.

    Article  CAS  Google Scholar 

  57. Sreenivasan S, Jiskoot W, Rathore AS. Rapid aggregation of therapeutic monoclonal antibodies by bubbling induced air/liquid interfacial and agitation stress at different conditions. Eur J Pharm Biopharm. 2021;168:97–109.

    Article  CAS  PubMed  Google Scholar 

  58. Ji JA, Zhang B, Cheng W, Wang YJ. Methionine, tryptophan, and histidine oxidation in a model protein, PTH: mechanisms and stabilization. J Pharm Sci. 2009;98:4485–500.

    Article  CAS  PubMed  Google Scholar 

  59. Zheng K, Ren D, Wang YJ, Lilyestrom W, Scherer T, Hong JKY, Ji JA. Monoclonal antibody aggregation associated with free radical induced oxidation. Int J Mol Sci. 2021;22:3952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We appreciate the National Natural Science Foundation of China (Grant No. 81741144) and the Ministry of Science and Technology of China (Grant No. 2018ZX09J18107–002) for their financial support. We also thank Ms. Xinyu Wang at Zhejiang University for performing the EPR experiments and Zhejiang Bioray Biopharmaceutical for providing us with mAb-X used for this study. Special thanks to Fluid Imaging Technologies for providing access to their FlowCam 8100. The authors declare that they have no known competing financial or personal interest conflict.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Jie Fang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, ZY., Huo, GL., Sun, MF. et al. Characterization of Grinding-Induced Subvisible Particles and Free Radicals in a Freeze-Dried Monoclonal Antibody Formulation. Pharm Res 39, 399–410 (2022). https://doi.org/10.1007/s11095-022-03170-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03170-9

KEY WORDS

Navigation