Skip to main content
Log in

Light-Induced Covalent Buffer Adducts to Histidine in a Model Protein

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Light is known to induce histidine (His) oxidation and His-His crosslinking in proteins. The crosslinking is resulted from the nucleophilic attack of a His to a photooxidized His from another protein. The goal of this work is to understand if covalent buffer adducts on His residues can be generated by light through similar mechanisms in nucleophilic buffers such as Tris and His.

Methods

A model protein (DNase) was buffer exchanged into nucleophilic buffers before light exposure. Photogenerated products were characterized by tryptic peptide mapping with mass spectrometry (MS) analysis. Several buffer adductions on His residues were identified after light exposure. To understand the influencing factors of such reactions, the levels of adducts were measured for six nucleophilic buffers on all His residues in DNase.

Results

The levels of adducts were found to correlate with the solvent accessibility of the His residue. The levels of adducts also correlate with the structure of the nucleophile, especially the steric restrictions of the nucleophile. The levels of adducts can be higher than that of other His photoreaction products, including photooxidation and crosslinking.

Conclusions

In nucleophilic buffers, light can induce covalently-linked adducts to His residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

1O2 :

Singlet oxygen

ACES:

N-(2-Acetamido)-2-Aminoethanesulfonic acid

Arg:

Arginine

Asn:

Asparagine

Asp:

Aspartic acid

Bis-tris :

1,3-Bis(Tris(Hydroxymethyl)Methylamino

Bis-tris-propane:

1,3-Bis(Tris(Hydroxymethyl)Methylamino)Propane

CaCl2 :

Calcium chloride

CF:

Cystic fibrosis

CHO:

Chinese hamster ovary

CID:

Collision-induced dissociation

Cys:

Cystenine

Da:

Daltons

DTT:

Dithiothreitol

Fc:

Fragment, crystallizable

FcRn:

Neonatal Fc receptor

Gly:

Glysine

HCl:

Hydrochloric acid

HEPES:

2-[4-(2-Hydroxyethyl)Piperazin-1-Yl]Ethanesulfonic acid

His:

Histidine

HPLC:

High performance liquid chromatography

ICH:

International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use

IgG:

Immunoglobin G

Lys:

Lysine

MAb:

Monoclonal antibody

MES:

2-(N-Morpholino)Ethanesulfonic acid

Met:

Methionine

MOE:

Molecular operating environment

MOPSO:

3-Morpholino-2-Hydroxypropanesulfonic acid

MS:

Mass spectrometry

NaCl:

Sodium chloride

NaOH:

Sodium hydroxide

PETG:

Polyethylene terephthalate glycol

PS-20:

Polysorbate-20

RhDNase:

Recombinant human DNase

SASA:

Solvent accessible surface area

TFA:

Trifluoroacetic acid

TPA:

Tissue plasminogen activator

Tris:

(2-Amino-2-(Hydroxymethyl)-1,3-Propanediol

Trp:

Tryptophan

Tyr:

Tyrosine

UV:

Ultraviolet

Vis:

Visible

XIC:

Extracted ion chromatogram

References

  1. Rao S, Chun C, Fan J, Kofron JM, Yang MB, Hegde RS, et al. A direct and melanopsin-dependent fetal light response regulates mouse eye development. Nature. 2013;494(7436):243–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Buckman SY, Gresham A, Hale P, Hruza G, Anast J, Masferrer J, et al. COX-2 expression is induced by UVB exposure in human skin: implications for the development of skin cancer. Carcinogenesis. 1998;19(5):723–9.

    Article  CAS  PubMed  Google Scholar 

  3. Findlay GM. Ultra-violet light and skin cancer. Lancet. 1928;212(5491):1070–3.

    Article  Google Scholar 

  4. Raiskup-Wolf F, Hoyer A, Spoerl E, Pillunat LE. Collagen crosslinking with riboflavin and ultraviolet-a light in keratoconus: long-term results. J Cataract Refract Surg. 2008;34(5):796–801.

    Article  PubMed  Google Scholar 

  5. Chévez-Barrios P, Wiseman AL, Rojas E, C-N O, Lieberman MW. Cataract development in γ-Glutamyl Transpeptidase-deficient mice. Exp Eye Res. 2000;71(6):575–82.

    Article  PubMed  Google Scholar 

  6. Fischer SM, Lo H-H, Gordon GB, Seibert K, Kelloff G, Lubet RA, et al. Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, and indomethacin against ultraviolet light–induced skin carcinogenesis. Mol Carcinog. 1999;25(4):231–40.

    Article  CAS  PubMed  Google Scholar 

  7. Varma SD, Chand D, Sharma YR, Kuck JF, Richards RD. Oxidative stress on lens and cataract formation: role of light and oxygen. Curr Eye Res. 1984;3(1):35–58.

    Article  CAS  PubMed  Google Scholar 

  8. Rogers LJ. Light experience and asymmetry of brain function in chickens. Nature. 1982;297(5863):223–5.

    Article  CAS  PubMed  Google Scholar 

  9. O'Donovan P, Perrett CM, Zhang X, Montaner B, Xu Y-Z, Harwood CA, et al. Azathioprine and UVA light generate mutagenic oxidative DNA damage. Science. 2005;309(5742):1871–4.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Godley BF, Shamsi FA, Liang F-Q, Jarrett SG, Davies S, Boulton M. Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J Biol Chem. 2005;280(22):21061–6.

    Article  CAS  PubMed  Google Scholar 

  11. Kielbassa C, Roza L, Epe B. Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis. 1997;18(4):811–6.

    Article  CAS  PubMed  Google Scholar 

  12. Filipe V, Jiskoot W, Basmeleh AH, Halim A, Schellekens H, Brinks V. Immunogenicity of different stressed IgG monoclonal antibody formulations in immune tolerant transgenic mice. MAbs. 2012;4(6):740–52.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Roy S, Mason BD, Schöneich CS, Carpenter JF, Boone TC, Kerwin BA. Light-induced aggregation of type I soluble tumor necrosis factor receptor. J Pharm Sci. 2009;98(9):3182–99.

    Article  CAS  PubMed  Google Scholar 

  14. Redecke L, Binder S, Elmallah MIY, Broadbent R, Tilkorn C, Schulz B, et al. UV-light-induced conversion and aggregation of prion proteins. Free Radic Biol Med. 2009;46(10):1353–61.

    Article  CAS  PubMed  Google Scholar 

  15. Wu L-Z, Sheng Y-B, Xie J-B, Wang W. Photoexcitation of tryptophan groups induced reduction of disulfide bonds in hen egg white lysozyme. J Mol Struct. 2008;882(1–3):101–6.

    Article  CAS  Google Scholar 

  16. Kerwin BA, Remmele RL. Protect from light: Photodegradation and protein biologics. J Pharm Sci. 2007;96(6):1468–79.

    Article  CAS  PubMed  Google Scholar 

  17. Dizdaroglu M, Gajewski E, Reddy P, Margolis SA. Structure of a hydroxyl radical-induced DNA-protein crosslink involving thymine and tyrosine in nucleohistone. Biochemistry. 1989;28(8):3625–8.

    Article  CAS  PubMed  Google Scholar 

  18. Bane J, Mozziconacci O, Yi L, Wang YJ, Sreedhara A, Schöneich C. Photo-oxidation of IgG1 and model peptides: detection and analysis of triply oxidized his and Trp side chain cleavage products. Pharm Res. 2017;34(1):229–42.

    Article  CAS  PubMed  Google Scholar 

  19. Sreedhara A, Yin J, Joyce M, Lau K, Wecksler AT, Deperalta G, et al. Effect of ambient light on IgG1 monoclonal antibodies during drug product processing and development. Eur J Pharm Biopharm. 2016;100:38–46.

    Article  CAS  PubMed  Google Scholar 

  20. Haywood J, Mozziconacci O, Allegre KM, Kerwin BA, Schöneich C. Light-induced conversion of Trp to Gly and Gly Hydroperoxide in IgG1. Mol Pharm. 2013;10(3):1146–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hensel M, Steurer R, Fichtl J, Elger C, Wedekind F, Petzold A, et al. Identification of potential sites for tryptophan oxidation in recombinant antibodies using tert-Butylhydroperoxide and quantitative LC-MS. PLoS One. 2011;6(3):e17708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huvaere K, Skibsted LH. Light-induced oxidation of tryptophan and histidine. Reactivity of aromatic N-Heterocycles toward triplet-excited Flavins. JACS. 2009;131(23):8049–60.

    Article  CAS  Google Scholar 

  23. Chumsae C, Gaza-Bulseco G, Sun J, Liu H. Comparison of methionine oxidation in thermal stability and chemically stressed samples of a fully human monoclonal antibody. J Chromatogr B. 2007;850(1–2):285–94.

    Article  CAS  Google Scholar 

  24. Agon VV, Bubb WA, Wright A, Hawkins CL, Davies MJ. Sensitizer-mediated photooxidation of histidine residues: evidence for the formation of reactive side-chain peroxides. Free Radic Biol Med. 2006;40(4):698–710.

    Article  CAS  PubMed  Google Scholar 

  25. Davies MJ. Singlet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun. 2003;305(3):761–70.

    Article  CAS  PubMed  Google Scholar 

  26. Mason BD, Schöneich C, Kerwin BA. Effect of pH and light on aggregation and conformation of an IgG1 mAb. Mol Pharm. 2012;9(4):774–90.

    Article  CAS  PubMed  Google Scholar 

  27. Mozziconacci O, Kerwin BA, Schöneich C. Exposure of a monoclonal antibody, IgG1, to UV-light leads to protein Dithiohemiacetal and Thioether cross-links: a role for thiyl radicals? Chem Res Toxicol. 2010;23(8):1310–2.

    Article  CAS  PubMed  Google Scholar 

  28. Mahler H-C, Friess W, Grauschopf U, Kiese S. Protein aggregation: pathways, induction factors and analysis. J Pharm Sci. 2009;98(9):2909–34.

    Article  CAS  PubMed  Google Scholar 

  29. Tous GI, Wei Z, Feng J, Bilbulian S, Bowen S, Smith J, et al. Characterization of a novel modification to monoclonal antibodies: Thioether cross-link of heavy and light chains. Anal Chem. 2005;77(9):2675–82.

    Article  CAS  PubMed  Google Scholar 

  30. Mahler H-C, Müller R, Frieβ W, Delille A, Matheus S. Induction and analysis of aggregates in a liquid IgG1-antibody formulation. Eur J Pharm Biopharm. 2005;59(3):407–17.

    Article  CAS  PubMed  Google Scholar 

  31. Shen H-R, Spikes JD, Smith CJ, Kopeček J. Photodynamic cross-linking of proteins: V. Nature of the tyrosine–tyrosine bonds formed in the FMN-sensitized intermolecular cross-linking of N-acetyl-l-tyrosine. J Photochem Photobiol A Chem. 2000;133(1–2):115–22.

    Article  CAS  Google Scholar 

  32. Stroop SD, Conca DM, Lundgard RP, Renz ME, Peabody LM, Leigh SD. Photosensitizers form in Histidine buffer and mediate the Photodegradation of a monoclonal antibody. J Pharm Sci. 2011;100(12):5142–55.

    Article  CAS  PubMed  Google Scholar 

  33. Schramma KR, Bushin LB, Seyedsayamdost MR. Structure and biosynthesis of a macrocyclic peptide containing an unprecedented lysine-to-tryptophan crosslink. Nat Chem. 2015;7(5):431–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shen H-R, Spikes JD, Smith CJ, Kopeček J. Photodynamic cross-linking of proteins: IV. Nature of the his–his bond(s) formed in the rose bengal-photosensitized cross-linking of N-benzoyl-L-histidine. J Photochem Photobiol A Chem. 2000;130(1):1–6.

    Article  Google Scholar 

  35. Shen H-R, Spikes JD, Kopečeková P, Kopeček J. Photodynamic crosslinking of proteins. I. Model studies using histidine- and lysine-containing N-(2-hydroxypropyl) methacrylamide copolymers. J Photochem Photobiol B Biol. 1996;34(2–3):203–10.

    Article  CAS  Google Scholar 

  36. Dalsgaard TK, Otzen D, Nielsen JH, Larsen LB. Changes in structures of milk proteins upon photo-oxidation. J Agric Food Chem. 2007;55(26):10968–76.

    Article  CAS  PubMed  Google Scholar 

  37. Nieva J, Kerwin L, Wentworth AD, Lerner RA, Wentworth P Jr. Immunoglobulins can utilize riboflavin (vitamin B2) to activate the antibody-catalyzed water oxidation pathway. Immunol Lett. 2006;103(1):33–8.

    Article  CAS  PubMed  Google Scholar 

  38. Grzelak A, Rychlik B, Bartosz G. Light-dependent generation of reactive oxygen species in cell culture media. Free Radic Biol Med. 2001;30(12):1418–25.

    Article  CAS  PubMed  Google Scholar 

  39. Sjöberg B, Foley S, Staicu A, Pascu A, Pascu M, Enescu M. Protein reactivity with singlet oxygen: influence of the solvent exposure of the reactive amino acid residues. J Photochem Photobiol B Biol. 2016;159:106–10.

    Article  Google Scholar 

  40. Sharma VK. Reactive oxygen species. oxidation of amino acids, peptides, and proteins. Hoboken: John Wiley & Sons, Inc; 2012. p. 122–204.

    Book  Google Scholar 

  41. Pattison DI, Rahmanto AS, Davies MJ. Photo-oxidation of proteins. Photochem Photobiol Sci. 2012;11(1):38–53.

    Article  CAS  PubMed  Google Scholar 

  42. Gracanin M, Hawkins CL, Pattison DI, Davies MJ. Singlet-oxygen-mediated amino acid and protein oxidation: formation of tryptophan peroxides and decomposition products. Free Radic Biol Med. 2009;47(1):92–102.

    Article  CAS  PubMed  Google Scholar 

  43. Davies MJ. The oxidative environment and protein damage. Biochim Biophys Acta. 2005;1703(2):93–109.

    Article  CAS  PubMed  Google Scholar 

  44. Grewal P, Mallaney M, Lau K, Sreedhara A. Screening methods to identify Indole derivatives that protect against reactive oxygen species induced tryptophan oxidation in proteins. Mol Pharm. 2014;11(4):1259–72.

    Article  CAS  PubMed  Google Scholar 

  45. Sreedhara A, Lau K, Li C, Hosken B, Macchi F, Zhan D, et al. Role of surface exposed tryptophan as substrate generators for the antibody catalyzed water oxidation pathway. Mol Pharm. 2013;10(1):278–88.

    Article  CAS  PubMed  Google Scholar 

  46. Nauser T, Koppenol WH, Schöneich C. Protein thiyl radical reactions and product formation: a kinetic simulation. Free Radic Biol Med. 2015;80:158–63.

    Article  CAS  PubMed  Google Scholar 

  47. Zhou S, Mozziconacci O, Kerwin B, Schöneich C. The photolysis of disulfide bonds in IgG1 and IgG2 leads to selective Intramolecular hydrogen transfer reactions of cysteine thiyl radicals, probed by covalent H/D exchange and RPLC-MS/MS analysis. Pharm Res. 2013;30(5):1291–9.

    Article  CAS  PubMed  Google Scholar 

  48. Mozziconacci O, Sharov V, Williams TD, Kerwin BA, Schöneich C. Peptide cysteine thiyl radicals abstract hydrogen atoms from surrounding amino acids: the photolysis of a Cystine containing model peptide. J Phys Chem B. 2008;112(30):9250–7.

    Article  CAS  PubMed  Google Scholar 

  49. Mozziconacci O, Kerwin BA, Schöneich C. Photolysis of an Intrachain peptide disulfide bond: primary and secondary processes, formation of H2S, and hydrogen transfer reactions. J Phys Chem B. 2010;114(10):3668–88.

    Article  CAS  PubMed  Google Scholar 

  50. Permyakov EA, Permyakov SE, Deikus GY, Morozova-Roche LA, Grishchenko VM, Kalinichenko LP, et al. Ultraviolet illumination-induced reduction of α-lactalbumin disulfide bridges. Proteins: Struct, Funct, Bioinf. 2003;51(4):498–503.

    Article  CAS  Google Scholar 

  51. Nauser T, Schöneich C. Thiyl radicals abstract hydrogen atoms from the αC−H bonds in model peptides: absolute rate constants and effect of amino acid structure. JACS. 2003;125(8):2042–3.

    Article  CAS  Google Scholar 

  52. Vanhooren A, Devreese B, Vanhee K, Van Beeumen J, Hanssens I. Photoexcitation of tryptophan groups induces reduction of two disulfide bonds in goat α-Lactalbumin†. Biochemistry. 2002;41(36):11035–43.

    Article  CAS  PubMed  Google Scholar 

  53. Mozziconacci O, Schöneich C. Sequence-specific formation of d-amino acids in a monoclonal antibody during light exposure. Mol Pharm. 2014;11(11):4291–7.

    Article  CAS  PubMed  Google Scholar 

  54. Mozziconacci O, Williams TD, Schöneich C. Intramolecular hydrogen transfer reactions of thiyl radicals from glutathione: formation of carbon-centered radical at Glu, Cys, and Gly. Chem Res Toxicol. 2012;25(9):1842–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mozziconacci O, Kerwin BA, Schöneich C. Reversible hydrogen transfer reactions of cysteine thiyl radicals in peptides: the conversion of cysteine into Dehydroalanine and alanine, and of alanine into Dehydroalanine. J Phys Chem B. 2011;115(42):12287–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Naumov S, Schöneich C. Intramolecular addition of cysteine thiyl radical to phenylalanine and tyrosine in model peptides, Phe (CysS•) and Tyr(CysS•): a computational study. J Phys Chem A. 2009;113(15):3560–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mozziconacci O, Kerwin BA, Schöneich C. Exposure of a monoclonal antibody, IgG1, to UV-light leads to protein Dithiohemiacetal and Thioether cross-links: a role for thiyl radicals? Chem Res Toxicol. 2010;23(8):1310–2.

    Article  CAS  PubMed  Google Scholar 

  58. Liu M, Zhang Z, Cheetham J, Ren D, Zhou ZS. Discovery and characterization of a photo-oxidative histidine-histidine cross-link in IgG1 antibody utilizing 18O-labeling and mass spectrometry. Anal Chem. 2014;86(10):4940–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lei M, Carcelen T, Walters BT, Zamiri C, Quan C, Hu Y, et al. Structure-based correlation of light-induced histidine reactivity in a model protein. Anal Chem. 2017;89(13):7225–31.

    Article  CAS  PubMed  Google Scholar 

  60. Zbacnik TJ, Holcomb RE, Katayama DS, Murphy BM, Payne RW, Coccaro RC, et al. Role of buffers in protein formulations. J Pharm Sci. 106(3):713–33.

  61. Gokarn YR, Kras E, Nodgaard C, Dharmavaram V, Fesinmeyer RM, Hultgen H, et al. Self-buffering antibody formulations. J Pharm Sci. 97(8):3051–66.

  62. Maity H, O'Dell C, Srivastava A, Goldstein J. Effects of arginine on photostability and thermal stability of IgG1 monoclonal antibodies. Curr Pharm Biotechnol. 2009;10(8):761–6.

    Article  CAS  PubMed  Google Scholar 

  63. Zbacnik TJ, Holcomb RE, Katayama DS, Murphy BM, Payne RW, Coccaro RC, et al. Role of buffers in protein formulations. J Pharm Sci. 2017;106(3):713–33.

    Article  CAS  PubMed  Google Scholar 

  64. Stability Testing: Photostability Testing of New Drug Substances and Products. Q1b. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH); 1996.

  65. Baertschi SW, Clapham D, Foti C, Jansen PJ, Kristensen S, Reed R, et al. Implications of in-use Photostability: proposed guidance for Photostability testing and labeling to support the administration of photosensitive pharmaceutical products, part 1: drug products administered by injection. J Pharm Sci. 2013;102(11):3888–99.

    Article  CAS  PubMed  Google Scholar 

  66. Baertschi SW, Alsante KM, Tønnesen HH. A critical assessment of the ICH guideline on photostability testing of new drug substances and products (Q1B): recommendation for revision. J Pharm Sci. 2010;99(7):2934–40.

    Article  CAS  PubMed  Google Scholar 

  67. Kang P, Foote CS. Photosensitized oxidation of 13C,15N-labeled imidazole derivatives. JACS. 2002;124(32):9629–38.

    Article  CAS  Google Scholar 

  68. Parsiegla G, Noguere C, Santell L, Lazarus RA, Bourne Y. The structure of human DNase I bound to magnesium and phosphate ions points to a catalytic mechanism common to members of the DNase I-like superfamily. Biochemistry. 2012;51(51):10250–8.

    Article  CAS  PubMed  Google Scholar 

  69. Lazarus RA, Wagener JS. Recombinant human deoxyribonuclease I. In: Crommelin DJ, Sindelar RD, Meibohm B, editors. Pharmaceutical biotechnology: fundamentals and applications. New York: Springer; 2013.

    Google Scholar 

  70. Grimsley GR, Scholtz JM, Pace CN. A summary of the measured pK values of the ionizable groups in folded proteins. Protein Sci. 2009;18(1):247–51.

    CAS  PubMed  Google Scholar 

  71. Harris TK, Turner GJ. Structural basis of perturbed pKa values of catalytic groups in enzyme active sites. IUBMB Life. 2002;53(2):85–98.

    Article  CAS  PubMed  Google Scholar 

  72. Mayr H, Lakhdar S, Maji B, Ofial AR. A quantitative approach to nucleophilic organocatalysis. Beilstein J Org Chem. 2012;8:1458–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Remko M, Fitz D, Rode BM. Effect of metal ions (li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+ and Zn2+) and water coordination on the structure and properties of l-histidine and zwitterionic l-histidine. Amino Acids. 2010;39(5):1309.

    Article  CAS  PubMed  Google Scholar 

  74. Zhao F, Ghezzo-Schöneich E, Aced GI, Hong J, Milby T, Schöneich C. Metal-catalyzed oxidation of Histidine in human growth hormone: mechanism, isotope effects, and inhibition by a mild denaturing alcohol. J Biol Chem. 1997;272(14):9019–29.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

The authors would like to thank the insightful discussion with Taylor Zhang, Camellia Zamiri and Bingchuan Wei.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Lei or Christian Schöneich.

Electronic Supplementary Material

ESM 1

(DOCX 294 kb)

ESM 2

(CDX 46 kb)

ESM 3

(CDX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, M., Quan, C., Wang, Y.J. et al. Light-Induced Covalent Buffer Adducts to Histidine in a Model Protein. Pharm Res 35, 67 (2018). https://doi.org/10.1007/s11095-017-2339-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-017-2339-4

Keywords

Navigation