Skip to main content

Advertisement

Log in

Post-Synthetic Modification Nanoscale Metal-Organic Frameworks for Targeted Drug Delivery in Cancer Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Metal-organic frameworks (MOFs) have shown great potentials as drug delivery carriers, but the conventional methods for MOFs synthesis limited their use in biomedicine. The aim of this study was engineered tumor-targeted zinc nanoscale MOFs encapsulating chemotherapy drug.

Methods

We employed post-synthetic modification to construct tumor cell-targeted nanoscale zinc MOFs (nanoMOFs) functionalized with folate as the targeting ligand that binds specifically to folate receptors on tumor cells. The cytoctoxicity of drug-loaded nanoMOFs was measured by MTT assay. The cell target was tested by cell compete assay.

Results

The successful synthesis of folate-targeted nanoMOFs was confirmed by FTIR, 1H-NMR and ESI-MS analysis. In the drug loading test, the zinc nanoMOFs functionalized with folate quickly adsorbed up to 24 wt % 5-fluorouracil (5-FU) without causing obvious changes in the supramolecular crystalline organization of the material. The in vitro drug release profile of this nanoMOFs in phosphate buffered saline exhibited a biphasic pattern. The drug sustained release is the effect mainly of diffusion of 5-FU molecules, while the degradation of the carrier itself plays a minor role in this process. The drug-loaded nanoMOFs showed a stronger cytotoxicity than free 5-FU against three cancer cell lines in vitro with a distinct selectivity between folate receptors positive and negative cells.

Conclusions

These results encourage further in vivo studies of this nanoMOFs as candidates for tumor-targeted, sustained-release delivery of chemotherapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

5-FU:

5-fluorouracil

1 H NMR :

Proton nuclear magnetic resonance

ATCC :

American Type Culture Collection

CHCl 3 :

chloroform

DCC :

N,N’-dicyclohexylcarbodiimide

DMF :

Dimethyl formamide

DMSO :

Dimethylsulf-oxide

EA :

Elemental analysis

ESI-MS :

Electrospray ionization-mass spectrometry

FA-IRMOF-3 :

Folate-targeted zinc-based nanoMOFs

FBS :

Fetal bovine serum

FE-SEM :

Field emission scanning electron microscopy

FR :

Folate receptors

FT-IR :

Fourier transform infrared

HPLC :

High-performance liquid chromatography

IRMOF-3 :

Zn4O(C8H5NO4)3

MOFs:

Metal-organic frameworks

MTT :

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

nanoMOFs :

Nanosized MOFs

NH 2 -BDC :

2-Aminobenzene-1,4-dicarboxylic acid

PBS :

Phosphate buffered saline

PXRD :

Powder X-ray diffraction

SPSS :

Statistical Package for the Social Sciences

TGA :

Thermogravimetric analysis

UV :

Ultraviolet spectrophotometry

References

  1. Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, et al. Metal-organic frameworks in biomedicine. Chem Rev. 2012;112:1232–68.

    Article  CAS  PubMed  Google Scholar 

  2. Della Rocca J, Liu D, Lin W. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem Res. 2011;44:957–68.

    Article  CAS  PubMed  Google Scholar 

  3. Cai W, Chu CC, Liu G, Wáng YX. Metal-organic framework-based nanomedicine platforms for drug delivery and molecular imaging. Small. 2015;11:4806–22.

    Article  CAS  PubMed  Google Scholar 

  4. Tan L, Li HW, Qiu YC, Chen DX, Wang X, Pan RY, et al. Stimuli-responsive metal–organic frameworks gated by pillar[5]arene supramolecular switches. Chem Sci. 2015;6:1640–4.

    Article  CAS  Google Scholar 

  5. Tan L, Song N, Zhang SXA, Li HW, Wang B, Yang YW. Ca2+, pH and thermo triple-responsive mechanized Zr-based MOFs for on-command drug release in bone diseases. J Mater Chem B. 2016;4:135–40.

    Article  CAS  Google Scholar 

  6. Agostoni V, Chalati T, Horcajada P, Willaime H, Anand R, Semiramoth N, et al. Towards an improved anti-HIV activity of NRTI via metal-organic frameworks nanoparticles. Adv Healthc Mater. 2013;2:1630–7.

    Article  CAS  PubMed  Google Scholar 

  7. He CB, KD L, Liu DM, Lin WB. Nanoscale metal-organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J Am Chem Soc. 2014;136:5181–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. di Nunzio MR, Agostoni V, Cohen B, Gref R, Douhal A. A “Ship in a bottle” strategy to load a hydrophilic anticancer drug in porous metal organic framework nanoparticles: efficient encapsulation, matrix stabilization, and photodelivery. J Med Chem. 2014;57:411-20.

  9. Nagarkar SS, Desai AV, Ghosh SK. Stimulus-responsive metal-organic frameworks. Chem Asian J. 2014;9:2358–76.

    Article  CAS  PubMed  Google Scholar 

  10. Cohen SM. Postsynthetic methods for the functionalization of metal-organic frameworks. Chem Rev. 2012;112:970–1000.

    Article  CAS  PubMed  Google Scholar 

  11. Garibay SJ, Wang ZQ, Tanabe KK, Cohen SM. Postsynthetic modification: a versatile approach toward multifunctional metal-organic frameworks. Inorg Chem. 2009;48:7341–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bellido E, Hidalgo T, Lozano MV, Guillevic M, Simón-Vázquez R, Santander-Ortega MJ, et al. Heparin-engineered mesoporous iron metal-organic framework nanoparticles: toward stealth drug nanocarriers. Adv Healthc Mater. 2015;4:1246–57.

    Article  CAS  PubMed  Google Scholar 

  13. An J, Geib SJ, Rosi NL. Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. J Am Chem Soc. 2009;131:8376–7.

    Article  CAS  PubMed  Google Scholar 

  14. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater. 2010;9:172–8.

    Article  CAS  PubMed  Google Scholar 

  15. Ren F, Yang B, Cai J, Jiang YD, Xu J, Wang S. Toxic effect of zinc nanoscale metal-organic frameworks on rat pheochromocytoma (PC12) cells in vitro. J Hazard Mater. 2014;271:283–91.

    Article  CAS  PubMed  Google Scholar 

  16. Tan LL, Li H, Zhou Y, Zhang Y, Feng X, Wang B, et al. Zn2+-triggered drug release from biocompatible zirconium MOFs equipped with supramolecular gates. Small. 2015;11:3807–13.

    Article  CAS  PubMed  Google Scholar 

  17. YN W, Zhou M, Li S, Li Z, Li J, Wu B, et al. Magnetic metal-organic frameworks: γ-Fe2O3@MOFs via confined in situ pyrolysis method for drug delivery. Small. 2014;10:2927–36.

    Article  Google Scholar 

  18. Ingleson MJ, Barrio JP, Guilbaud JB, Khimyak YZ, Rosseinsky MJ. Framework functionalisation triggers metal complex binding. Chem Commun. 2008;21:2680–2.

    Article  Google Scholar 

  19. Wang ZQ, Tanabe KK, Cohen SM. Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on reactivity. Inorg Chem. 2009;48:296–306.

    Article  CAS  PubMed  Google Scholar 

  20. Werner ME, Copp JA, Karve S, Cummings ND, Sukumar R, Li C, et al. Folate-targeted polymeric nanoparticle formulation of docetaxel is an effective molecularly targeted radiosensitizer with efficacy dependent on the timing of radiotherapy. ACS Nano. 2011;5:8990–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Werner ME, Karve S, Sukumar R, Cummings ND, Copp JA, Chen RC, et al. Folate-targeted nanoparticle delivery of chemo- and radiotherapeutics for the treatment of ovarian cancer peritoneal metastasis. Biomaterials. 2011;32:8548–54.

    Article  CAS  PubMed  Google Scholar 

  22. Sulistio A, Lowenthal J, Blencowe A, Bongiovanni MN, Ong L, Gras SL, et al. Folic acid conjugated amino acid-based star polymers for active targeting of cancer cells. Biomacromulecules. 2011;12:3469–77.

    Article  CAS  Google Scholar 

  23. Pasut G, Canal F, Dalla VL, Arpicco S, Veronese FM, Schiavon O. Antitumoral activity of PEG-gemcitabine prodrugs targeted by folic acid. J Control Release. 2008;127:239–48.

    Article  CAS  PubMed  Google Scholar 

  24. Tanabe KK, Wang ZQ, Cohen SM. Systematic functionalization of a metal-organic framework via a postsynthetic modification approach. J Am Chem Soc. 2008;130:8508–17.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang T, Li GY, Guo L, Chen H. Synthesis of thermo-sensitive CS-g-PNIPAM/CMC complex nanoparticles for controlled release of 5-FU. Int J Biol Macromol. 2012;51:1109–15.

    Article  CAS  PubMed  Google Scholar 

  26. Cheng MR, He B, Wan T, Zhu W, Han J, Zha B, et al. 5-fluorouracil nanoparticles inhibit hepatocellular carcinoma via activation of the p53 pathway in the orthotopic transplant mouse model. PLoS One. 2012;7:e47115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tse C, Zohdy MJ, Ye JY, O'Donnell M, Lesniak W, Balogh L. Enhanced optical breakdown in KB cells labeled with folate-targeted silver-dendrimer composite nanodevices. Nanomedicine. 2011;7:97–106.

    Article  CAS  PubMed  Google Scholar 

  28. Park EK, Lee SB, Lee YM. Preparation and characterization of methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials. 2005;26:1053–61.

    Article  CAS  PubMed  Google Scholar 

  29. Au KM, Satterlee A, Min YZ, Tian X, Kim YS, Caster JM, et al. Folate-targeted pH-responsive calcium zoledronate nanoscale metalorganic frameworks: turning a bone antiresorptive agent into an anticancer therapeutic. Biomaterials. 2016;82:178-93.

  30. Gao XC, Zhai MJ, Guan WH, Liu JJ, Liu ZL, Damirin A. Controllable synthesis of a smart multifunctional nanoscale metal–organic framework for magnetic resonance/optical imaging and targeted drug delivery. ACS Appl Mater Interfaces. 2017;9:3455–62.

    Article  CAS  PubMed  Google Scholar 

  31. Hu Q, Yu J, Liu M, Liu A, Dou Z, Yang YA. Low cytotoxic cationic metal-organic framework carrier for controllable drug release. J Med Chem. 2014;57:5679–85.

    Article  CAS  PubMed  Google Scholar 

  32. Burns ER, Beland SS. Induction by 5-fluorouracil of a major phase difference in the circadian profiles of DNA synthesis between the Ehrlich ascites carcinoma and five normal organs. Cancer Lett. 1983;20:235–9.

    Article  CAS  PubMed  Google Scholar 

  33. Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003;3:330–8.

    Article  CAS  PubMed  Google Scholar 

  34. Parker WB, Cheng YC. Metabolism and mechanism of action of 5-fluorouracil. Pharmacol Ther. 1990;48:381–95.

    Article  CAS  PubMed  Google Scholar 

  35. Francini G, Petrioli R, Aquino A, Gonnelli S. Advanced breast cancer treatment with folinic acid, 5-fluorouracil, and mitomycin C. Cancer Chemother Pharmacol. 1993;32:359–64.

    Article  CAS  PubMed  Google Scholar 

  36. Paolo A D, Danesi R, Falcone A, Cionini L, Vannozzi F, Masi G, et al. Relationship between 5-fluorouracil disposition, toxicity and dihydropyrimidine dehydrogenase activity in cancer patients. Ann Oncol. 2001;12:1301–6.

  37. van Kuilenburg AB, Haasjes J, Richel DJ, Zoetekouw L, Lenthe HV, De Abreu RA, et al. Clinical implications of dihydropyrimidine dehydrogenase (DPD) deficiency in patients with severe 5-fluorouracil-associated toxicity: identification of new mutations in the DPD gene. Clin Cancer Res. 2000;6:4705–12.

    PubMed  Google Scholar 

  38. Lucena FR, de Araújo LC, Rodrigues DM, da Silva TG, Pereira VR, Militão GC, et al. Induction of cancer cell death by apoptosis and slow release of 5-fluoracil from metal-organic frameworks cu-BTC. Biomed Pharmacother. 2013;67:707–13.

    Article  CAS  PubMed  Google Scholar 

  39. Chowdhuri AR, Bhattacharya D, Sahu SK. Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent. Dalton Trans. 2016;45:2963–73.

    Article  Google Scholar 

  40. Lu Y, Ding N, Yang C, Huang L, Liu J, Xiang G. Preparation and in vitro evaluation of a folate-linked liposomal curcumin formulation. J Liposome Res. 2012;22:110–9.

    Article  CAS  PubMed  Google Scholar 

  41. Tsai PF, Chang WY, Hsiao YC, Li KJ, Shau MD. Synthesis and characterization of cationic glycidyl-based poly(aminoester)-folic acid targeting conjugates and study on gene delivery. Molecules. 2012;17:9056–69.

    Article  CAS  PubMed  Google Scholar 

  42. Toffoli G, Cernigoi C, Russo A, Gallo A, Bagnoli M, Boiocchi M. Overexpression of folate binding protein in ovarian cancers. Int J Cancer. 1997;74:193–8.

    Article  CAS  PubMed  Google Scholar 

  43. Wu M, Gunning W, Ratnam M. Expression of folate receptor type alpha in relation to cell type, malignancy, and differentiation in ovary, uterus, and cervix. Cancer Epidemiol Biomark Prev. 1999;8:775–82.

    CAS  Google Scholar 

  44. Weitman SD, Frazier KM, Kamen BA. The folate receptor in central nervous system malignancies of childhood. J Neuro-Oncol. 1994;21:107–12.

    Article  CAS  Google Scholar 

  45. Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski VJ, et al. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res. 1992;52:3396–401.

    CAS  PubMed  Google Scholar 

  46. Patrick TA, Kranz DM, van Dyke TA, Roy EJ. Folate receptors as potential therapeutic targets in choroid plexus tumors of SV40 transgenic mice. J Neurooncol. 1997;32:111-23.

  47. Zotter Á, Oláh J, Hlavanda E, Bodor A, Perczel A, Szigeti K, et al. Zn2+-induced rearrangement of the disordered TPPP/p25 affects its microtubule assembly and GTPase activity. Biochemistry. 2011;50:9568–78.

    Article  CAS  PubMed  Google Scholar 

  48. Frederickson CJ. Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol. 1989;31:145–238.

    Article  CAS  PubMed  Google Scholar 

  49. Reddy JA, Low PS. Folate-mediated targeting of therapeutic and imaging agents to cancers. Crit Rev Ther Drug Carrier Syst. 1998;15:587–627.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

This work was funded by a Grant from the Science and Technology Planning Project of Guangdong Province (2014A010105026). This work was partially supported by grants from the National Natural Science Foundation of China (Grant 21,201,044), the Chinese Training Plan of Guangdong Province Outstanding Young Professors in Higher Education Institutions (GrantYQ2013084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Shen, M., Liu, J. et al. Post-Synthetic Modification Nanoscale Metal-Organic Frameworks for Targeted Drug Delivery in Cancer Cells. Pharm Res 34, 2440–2450 (2017). https://doi.org/10.1007/s11095-017-2253-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2253-9

Key Words

Navigation