Skip to main content
Log in

Electrospinnability of Poly Lactic-co-glycolic Acid (PLGA): the Role of Solvent Type and Solvent Composition

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

In this study, the electrospinnability of poly(lactic-co-glycolic acid) (PLGA) solutions was investigated, with a focus on understanding the influence of molecular weight of PLGA, solvent type and solvent composition on the physical properties of electrospun nanofibers.

Method

Various solvents were tested to dissolve two PLGA grades (50 KDa-RG755, 100 KDa-RG750). The viscoelasticity, surface tension, and evaporation rate of the PLGA solutions were characterized prior to the electrospinning process. The resulting electrospun nanofibers were characterized with respect to the morphology and mechanical properties.

Results

Two pairs of solvent mixtures, i.e. dimethylformamide (DMF)—tetrahydrofuran (THF) and DMF—chloroform (CHL), were identified to provide a stable cone-jet. Within the polymer concentration range studied (10–30%, w/v), RG750 solutions could be electrospun into uniform fibers at 30% (w/v) or at 20% (w/v) when modifying the solvent composition. In comparison to DMF-THF solution, fibers had larger diameter, higher stiffness and tensile strength when electrospun from DMF-CHL solution.

Conclusion

The high molecular weight polymer could ensure sufficient intermolecular interaction to generate uniform fibers. The solvent could influence the morphology and mechanical properties of the electrospun fibers by altering the properties of PLGA solution, and drying rate of fibers in the electrospinning process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

[η]:

Intrinsic viscosity

C*:

Overlap concentration

CHL:

Chloroform

DMF:

Dimethylformamide

ECM:

Extracellular matrix

G′:

Storage modulus

G″:

Loss modulus

GA:

Glycolic acid

LA:

Lactic acid

LVR:

Linear viscoelastic region

Mc :

Critical molecular weight

MW:

Molecular weight

PEG:

Polyethylene glycol

PEO:

Polyethylene oxide

PET-co-PEI:

Poly(ethylene terephthalate-co-ethylene isophthalate)

PGA:

Polyglycolic acid

PLA:

Polylactic acid

PLGA:

Poly(lactic-co-glycolic acid)

Rcoil :

Polymer coil radius

SEM:

Scanning electron microscope

t:

Time of flow of the polymer solution

t0 :

Time of flow of the solvent solution

TGA:

Thermogravimetric analysis

THF:

Tetrahydrofuran

ηrel :

Relative viscosity

ηsp :

Specific viscosity

REFERENCES

  1. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci. 2011;2011:1–19.

    Article  Google Scholar 

  2. Jose MV, Thomas V, Johnson KT, Dean DR, Nyairo E. Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering. Acta Biomater. 2009;5(1):305–15.

    Article  CAS  PubMed  Google Scholar 

  3. Cooper JA, Lu HH, Ko FK, Freeman JW, Laurencin CT. Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials. 2005;26(13):1523–32.

    Article  CAS  PubMed  Google Scholar 

  4. Chou SF, Carson D, Woodrow KA. Current strategies for sustaining drug release from electrospun nanofibers. J Control Release. 2015;220(Pt B):584–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Goonoo N, Bhaw-Luximon A, Jhurry D. Drug loading and release from electrospun biodegradable nanofibers. J Biomed Nanotechnol. 2014;10(9):2173–99.

    Article  CAS  PubMed  Google Scholar 

  6. Boateng J, Catanzano O. Advanced therapeutic dressings for effective wound healing—a review. J Pharm Sci. 2015;104(11):3653–80.

    Article  CAS  PubMed  Google Scholar 

  7. Rieger KA, Birch NP, Schiffman JD. Designing electrospun nanofiber mats to promote wound healing—a review. J Mater Chem B. 2013;1(36):4531.

    Article  CAS  Google Scholar 

  8. Szentivanyi AL, Zernetsch H, Menzel H, Glasmacher B. A review of developments in electrospinning technology: new opportunities for the design of artificial tissue structures. Int J Artif Organs. 2011;34(10):986–97.

    Article  CAS  PubMed  Google Scholar 

  9. Theron JP, Knoetze JH, Sanderson RD, Hunter R, Mequanint K, Franz T, et al. Modification, crosslinking and reactive electrospinning of a thermoplastic medical polyurethane for vascular graft applications. Acta Biomater. 2010;6(7):2434–47.

    Article  CAS  PubMed  Google Scholar 

  10. Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010;28(3):325–47.

    Article  CAS  PubMed  Google Scholar 

  11. Christanti Y, Walker LM. Surface tension driven jet break up of strain-hardening polymer solutions. J Non-Newtonian Fluid Mech. 2001;100(1):9–26.

    Article  CAS  Google Scholar 

  12. Zhu X, Cui W, Li X, Jin Y. Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromolecules. 2008;9(7):1795–801.

    Article  CAS  PubMed  Google Scholar 

  13. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60(4):613–21.

    Article  CAS  PubMed  Google Scholar 

  14. Prabaharan M, Jayakumar R, Nair S. Biomedical applications of polymeric nanofibers. In: Springer; 2012.

  15. Freyman T, Yannas I, Gibson L. Cellular materials as porous scaffolds for tissue engineering. Prog Mater Sci. 2001;46(3):273–82.

    Article  CAS  Google Scholar 

  16. Shenoy SL, Bates WD, Frisch HL, Wnek GE. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit. Polymer. 2005;46(10):3372–84.

    Article  CAS  Google Scholar 

  17. Kong L, Ziegler GR. Role of molecular entanglements in starch fiber formation by electrospinning. Biomacromolecules. 2012;13(8):2247–53.

    Article  CAS  PubMed  Google Scholar 

  18. Shin Y, Hohman M, Brenner M, Rutledge G. Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer. 2001;42(25):09955–67.

    Article  CAS  Google Scholar 

  19. McKee MG, Hunley MT, Layman JM, Long TE. Solution rheological behavior and electrospinning of cationic polyelectrolytes. Macromolecules. 2006;39(2):575–83.

    Article  CAS  Google Scholar 

  20. Gandhi K, Williams MC. Solvent effects on the viscosity of moderately concentrated polymer solutions. In: Journal of Polymer Science Part C: Polymer Symposia: Wiley Online Library; 1971. p. 211–234.

  21. Isono Y, Fujimoto T, Inagaki H, Shishido M, Nagasawa M. Viscoelastic properties of branched polymers. I. At the undiluted state. Polym J. 1980;12(2):131–7.

    Article  CAS  Google Scholar 

  22. Isono Y, Fujimoto T, Kajiura H, Nagasawa M. Viscoelastic properties of branched polymers. II in concentrated solutions. Polym J. 1980;12(6):369–78.

    Article  CAS  Google Scholar 

  23. Graessley WW. The entanglement concept in polymer rheology. In: The entanglement concept in polymer rheology. Springer; 1974. p. 1–179.

  24. Kong L, Ziegler GR. Rheological aspects in fabricating pullulan fibers by electro-wet-spinning. Food Hydrocoll. 2014;38:220–6.

    Article  CAS  Google Scholar 

  25. Kong L, Ziegler GR. Fabrication of pure starch fibers by electrospinning. Food Hydrocoll. 2014;36:20–5.

    Article  CAS  Google Scholar 

  26. Klossner RR, Queen HA, Coughlin AJ, Krause WE. Correlation of chitosan’s rheological properties and its ability to electrospin. Biomacromolecules. 2008;9(10):2947–53.

    Article  CAS  PubMed  Google Scholar 

  27. McKee MG, Wilkes GL, Colby RH, Long TE. Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Macromolecules. 2004;37(5):1760–7.

    Article  CAS  Google Scholar 

  28. Yu JH, Fridrikh SV, Rutledge GC. The role of elasticity in the formation of electrospun fibers. Polymer. 2006;47(13):4789–97.

    Article  CAS  Google Scholar 

  29. Pandey A, Jain DS. Poly Lactic‐Co‐Glycolic Acid (PLGA) copolymer and its pharmaceutical application. Handbook of polymers for pharmaceutical technologies: processing and applications, volume 2. 2015.p. 151–172.

  30. Singh G, Kaur T, Kaur R, Kaur A. Recent biomedical applications and patents on biodegradable polymer-PLGA. Int J Pharmacol Pharm Sci. 2014;1:30–42.

    Google Scholar 

  31. Chang N-J, Lam C-F, Lin C-C, Chen W-L, Li C-F, Lin Y-T, et al. Transplantation of autologous endothelial progenitor cells in porous PLGA scaffolds create a microenvironment for the regeneration of hyaline cartilage in rabbits. Osteoarthr Cartil. 2013;21(10):1613–22.

    Article  PubMed  Google Scholar 

  32. Sahoo S, Toh SL, Goh JC. A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells. Biomaterials. 2010;31(11):2990–8.

    Article  CAS  PubMed  Google Scholar 

  33. Hong Y, Fujimoto K, Hashizume R, Guan J, Stankus JJ, Tobita K, et al. Generating elastic, biodegradable polyurethane/poly (lactide-co-glycolide) fibrous sheets with controlled antibiotic release via two-stream electrospinning. Biomacromolecules. 2008;9(4):1200–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Baldursdóttir SG, Kjøniksen A-L, Karlsen J, Nyström B, Roots J, Tønnesen HH. Riboflavin-photosensitized changes in aqueous solutions of alginate. Rheological studies. Biomacromolecules. 2003;4(2):429–36.

    Article  PubMed  Google Scholar 

  35. Gomes D, Borges C, Pinto J. Evaluation of parameter uncertainties during the determination of the intrinsic viscosity of polymer solutions. Polymer. 2000;41(14):5531–4.

    Article  CAS  Google Scholar 

  36. Møller P, Fall A, Bonn D. Origin of apparent viscosity in yield stress fluids below yielding. EPL. 2009;87(3):38004.

    Article  Google Scholar 

  37. Mezger TG. The rheology handbook: for users of rotational and oscillatory rheometers: Vincentz Network. 2006.

  38. Morrison FA. Understanding rheology. USA: Oxford University Press; 2001.

    Google Scholar 

  39. Elliott PT, Steffenhagen MJ, Glass JE. Spray applications: Part III. Assessment of viscosities at high shear rates and dynamic uniaxial extensional viscosities on fan nozzle air sprayability. J Coat Technol Res. 2007;4(4):341–9.

    Article  CAS  Google Scholar 

  40. Crooks R, Cooper-White J, Boger DV. The role of dynamic surface tension and elasticity on the dynamics of drop impact. Chem Eng Sci. 2001;56(19):5575–92.

    Article  CAS  Google Scholar 

  41. Kennedy JC, Meadows J, Williams PA. Shear and extensional viscosity characteristics of a series of hydrophobically associating polyelectrolytes. J Chem Soc Faraday Trans. 1995;91(5):911–6.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This study was supported, in part, by Graduate School of Health and Medical Sciences of University of Copenhagen, Department of Pharmacy of University of Copenhagen, Department of Chemical Engineering, Biotechnology and Environmental Technology of University of Southern Denmark, Technology and Production Sciences (FTP, Project 12-126515/0602-02670B) and the Danish Council for Independent Research (DFF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingshi Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Baldursdottir, S.G., Aho, J. et al. Electrospinnability of Poly Lactic-co-glycolic Acid (PLGA): the Role of Solvent Type and Solvent Composition. Pharm Res 34, 738–749 (2017). https://doi.org/10.1007/s11095-017-2100-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2100-z

KEY WORDS

Navigation