Skip to main content
Log in

Isothermal Microcalorimetry of Pressurized Systems II: Effect of Excipient and Water Ingress on Formulation Stability of Amorphous Glycopyrrolate

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Use isothermal microcalorimetry to directly evaluate the effects of excipients and water content to produce a stable amorphous glycopyrrolate pressurized metered dose inhaler (pMDI) formulation.

Methods

Amorphous glycopyrrolate particles with and without excipients (Distearoyl-sn-glycero-3-phosphatidylcholine (DSPC) or β-cyclodextrin (βCD)) were spray dried and cold filled along with HFA 134a into customized thermal activity monitor (TAM) measurement ampoules. When applicable, a known amount of water was also pipetted into the ampoule. Sample ampoules were hermetically sealed, equilibrated to 25°C and measured isothermally for at least 24 h using the TAM III (TA Instruments, Sollentuna, Sweden).

Results

Amorphous glycopyrrolate particles were highly unstable and crystallized rapidly when suspended in HFA 134a. Co-spray drying the glycopyrrolate with DSPC failed to mitigate this instability, but co-spray drying with βCD protected the amorphous glycopyrrolate from crystallization, resulting in a stable formulation at low water contents (≤100 ppm).

Conclusions

This study shows that isothermal microcalorimetry can easily differentiate between physically stable and unstable pMDI formulations of glycopyrrolate within a few hours. Furthermore, it allows rapid screening of various formulation factors (drug form, excipients, water ingress), which can greatly reduce the time required to develop marketable products with acceptable shelf life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

(CaCl2):

Calcium chloride

(COPD):

Chronic obstructive pulmonary disease

(DSPC):

Distearoyl-sn-glycero-3-phosphatidylcholine

(FTIR):

Fourier transform infrared

(GP):

Glycopyrrolate

(pMDIs):

Pressurized metered dose inhalers

(TAM III):

Thermal activity monitor III

(Tg):

Glass transition temperature

(βCD):

β-Cyclodextrin

REFERENCES

  1. Cazzola M, Matera M. Emerging inhaled bronchodilators: an update. Eur Respir J. 2009;34(3):757–69.

    Article  CAS  PubMed  Google Scholar 

  2. Hansel TT, Neighbour H, Erin EM, Tan AJ, Tennant RC, Maus JG, et al. Glycopyrrolate causes prolonged bronchoprotection and bronchodilatation in patients with asthma. CHEST J. 2005;128(4):1974–9.

    Article  CAS  Google Scholar 

  3. Verkindre C, Fukuchi Y, Flémale A, Takeda A, Overend T, Prasad N, et al. Sustained 24-h efficacy of NVA237, a once-daily long-acting muscarinic antagonist, in COPD patients. Respir Med. 2010;104(10):1482–9.

    Article  CAS  PubMed  Google Scholar 

  4. Hancock BC, Carlson GT, Ladipo DD, Langdon BA, Mullarney MP. Comparison of the mechanical properties of the crystalline and amorphous forms of a drug substance. Int J Pharm. 2002;241(1):73–85.

    Article  CAS  PubMed  Google Scholar 

  5. Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000;17(4):397–404.

    Article  CAS  PubMed  Google Scholar 

  6. Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  7. Craig DQ, Royall PG, Kett VL, Hopton ML. The relevance of the amorphous state to pharmaceutical dosage forms: glassy drugs and freeze dried systems. Int J Pharm. 1999;179(2):179–207.

    Article  CAS  PubMed  Google Scholar 

  8. Morton D, Shott M, Davies R. Methods for preparing dry powder compositions of glycopyrrolate. In: EP Pat. 2012;1:755,555.

    Google Scholar 

  9. Dellamary LA, Tarara TE, Smith DJ, Woelk CH, Adractas A, Costello ML, et al. Hollow porous particles in metered dose inhalers. Pharm Res. 2000;17(2):168–74.

    Article  CAS  PubMed  Google Scholar 

  10. Tarara TE, Hartman MS, Gill H, Kennedy AA, Weers JG. Characterization of suspension-based metered dose inhaler formulations composed of spray-dried budesonide microcrystals dispersed in HFA-134a. Pharm Res. 2004;21(9):1607–14.

    Article  CAS  PubMed  Google Scholar 

  11. Lechuga-Ballesteros D, Vehring R, Noga B, Cummings H, Dwivedi SK. The future of COPD combination therapy: universal approach to enable equivalent delivery of single, double and triple combinations. Futur Med Chem. 2011;3:1703–18.

    Article  CAS  Google Scholar 

  12. Lechuga-Ballesteros D, Vehring R, Dwivedi SK. A New Cosuspension MDI Platform: Scientific Foundations of Mono, Dual and Triple Combination Products. In: Dalby PR Byron RN, Peart J, Suman JD, Young PM, editors. Respiratory Drug Delivery. Berlin: Davis Healthcare International Publishing; 2011. p. 101–11.

    Google Scholar 

  13. Vehring R, Lechuga-Ballesteros D, Joshi V, Noga B, Dwivedi SK. Cosuspensions of microcrystals and engineered microparticles for uniform and efficient delivery of respiratory therapeutics from pressurized metered dose inhalers. Langmuir. 2012;28(42):15015–23.

    Article  CAS  PubMed  Google Scholar 

  14. D’Sa D, Williams L, Speck J, Dwivedi S, Lechuga-Ballesteros D. Thermodynamic and Structural effects of CaCl2 on the Phase Transitions and Structures of Distearoyl-Phosphatidylcholine (DSPC) by Differential Scanning Calorimetry and X-Ray Diffraction. Washington: In.AAPS Annual Meeting and Exposition; 2011.

    Google Scholar 

  15. Stella VJ, Rajewski RA. Cyclodextrins: their future in drug formulation and delivery. Pharm Res. 1997;14(5):556–67.

    Article  CAS  PubMed  Google Scholar 

  16. Lechuga-Ballesteros D, Noga B, Vehring R, Cummings RH, Dwivedi SK. Novel cosuspension metered-dose inhalers for the combination therapy of chronic obstructive pulmonary disease and asthma. Futur Med Chem. 2011;3(13):1703–18.

    Article  CAS  Google Scholar 

  17. Miller NC. The Effects of Water in Inhalation Suspension Aerosol Formulations. Boca Raton: CRC Press; 1990.

    Google Scholar 

  18. Williams III RO, Hu C. Moisture uptake and its influence on pressurized metered-dose inhalers. Pharm Dev Technol. 2000;5(2):153–62.

    Article  CAS  PubMed  Google Scholar 

  19. Lechuga-Ballesteros D, Bakri A, Miller DP. Microcalorimetric measurement of the interactions between water vapor and amorphous pharmaceutical solids. Pharm Res. 2003;20(2):308–18.

    Article  CAS  PubMed  Google Scholar 

  20. Miller DP, Lechuga-Ballesteros D. Rapid assessment of the structural relaxation behavior of amorphous pharmaceutical solids: effect of residual water on molecular mobility. Pharm Res. 2006;23(10):2291–305.

    Article  CAS  PubMed  Google Scholar 

  21. D’Sa D, Lechuga-Ballesteros D, Chan H-K. Isothermal Microcalorimetry of pressurized systems I: A Rapid Method to Evaluate Pressurized Metered Dose Inhaler Formulations Pharmaceutical Research. Accepted.

  22. Thermal Activity Monitor III Manaul In: TA Instruments, editor.; 2012.

  23. Srikanth M, Babu G, Rao N, Sunil S, Balaji S, Ramanamurthy K. Dissolution rate enhancement of poorly soluble bicalutamide using β-cyclodextrin inclusion complexation. Int J Pharm Pharm Sci. 2010;2(1):191–8.

    CAS  Google Scholar 

  24. Hirayama F, Usami M, Kimura K, Uekama K. Crystallization and polymorphic transition behavior of chloramphenicol palmitate in 2-hydroxypropyl-β-cyclodextrin matrix. Eur J Pharm Sci. 1997;5(1):23–30.

    Article  CAS  Google Scholar 

  25. Uekama K, Hirayama F, Irie T. Cyclodextrin drug carrier systems. Chem Rev. 1998;98(5):2045–76.

    Article  CAS  PubMed  Google Scholar 

  26. Hirayama F, Uekama K. Methods of investigating and preparing inclusion compounds. Cyclodextrins and their industrial uses. Paris: Editions de Santé; 1987. p. 131–72.

    Google Scholar 

  27. Esclusa-Diaz M, Torres-Labandeira J, Kata M, Vila-Jato J. Inclusion complexation of glibenclamide with 2-hydroxypropyl-β-cyclodextrin in solution and in solid state. Eur J Pharm Sci. 1994;1(6):291–6.

    Article  CAS  Google Scholar 

  28. Shan-Yang L, Yuh-Horng K. Solid particulates of drug-β-cyclodextrin inclusion complexes directly prepared by a spray-drying technique. Int J Pharm. 1989;56(3):249–59.

    Article  Google Scholar 

  29. Hassan MA, Suleiman MS, Najib NM. Improvement of the in vitro dissolution characteristics of famotidine by inclusion in β-cyclodextrin. Int J Pharm. 1990;58(1):19–24.

    Article  CAS  Google Scholar 

  30. Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci. 1996;85(10):1017–25.

    Article  CAS  PubMed  Google Scholar 

  31. Del Valle EM. Cyclodextrins and their uses: a review. Process Biochem. 2004;39(9):1033–46.

    Article  Google Scholar 

  32. Bergeron R. Cycloamylose-substrate binding. Inclusion Compounds. 3rd ed. London: Academic; 1984. p. 391–443.

    Google Scholar 

  33. Reynolds JM, McNamara DP. Model for moisture transport into inhalation aerosols. Pharm Res. 1996;13(5):809–11.

    Article  CAS  PubMed  Google Scholar 

  34. Loftsson T, Vogensen SB, Brewster ME, Konráðsdóttir F. Effects of cyclodextrins on drug delivery through biological membranes. J Pharm Sci. 2007;96(10):2532–46.

    Article  CAS  PubMed  Google Scholar 

  35. Brewster ME, Vandecruys R, Peeters J, Neeskens P, Verreck G, Loftsson T. Comparative interaction of 2-hydroxypropyl-β-cyclodextrin and sulfobutylether-β-cyclodextrin with itraconazole: phase-solubility behavior and stabilization of supersaturated drug solutions. Eur J Pharm Sci. 2008;34(2):94–103.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS AND DISCLOSURES

The authors gratefully acknowledge [1] the financial support of the Australian Research Council (DP120102778) and [2] the facilities, and the scientific and technical assistance of the Australian Centre for Microscopy and Microanalysis at the University of Sydney. D. D’Sa is a recipient of the Australian IPRS and APA scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak-Kim Chan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Sa, D.J., Lechuga-Ballesteros, D. & Chan, HK. Isothermal Microcalorimetry of Pressurized Systems II: Effect of Excipient and Water Ingress on Formulation Stability of Amorphous Glycopyrrolate. Pharm Res 32, 714–722 (2015). https://doi.org/10.1007/s11095-014-1499-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1499-8

KEY WORDS

Navigation