Skip to main content
Log in

Zinc Protoporphyrin Polymeric Nanoparticles: Potent Heme Oxygenase Inhibitor for Cancer Therapy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Oxidation therapy is an antitumor strategy in which, apoptosis or necrosis is caused by either excess delivery of reactive oxygen species (ROS) as an oxidant or anti-oxidant inhibition. Heme oxygenase (HO) is an anti-oxidant enzyme that plays an important role in cell growth and proliferation. The purpose of this study was to prepare poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) loaded with zinc protoporphyrin (ZnPP) to deliver the HO inhibitor into tumor.

Methods

PLGA NPs were prepared using nanoprecipitation technique and their characteristics were optimized by Box-Behnken experimental design. Scanning electron microscopy and in vitro studies consisting of drug release, HO inhibitory effect, cytotoxicity and cellular uptake followed by in vivo biodistribution and blood cytotoxicity were carried out. Internalization of coumerin-6 loaded NPs by PC3 cells was visualized by confocal laser scanning microscopy beside quantitatively analysis.

Results

NPs average size, entrapment efficiency and drug loading were 100.12 ± 5.345 nm, 55.6% ± 2.49 and 7.98% ± 0.341 respectively. Equal HO inhibitory effect of NPs compared to free ZnPP was observed. The IC50 value of ZnPP-NPs for PC3 human prostate cancer cells was found to be 2.14 ± 0.083 μM.

Conclusion

In conclusion, ZnPP loaded PLGA NPs could exhibit enough HO inhibitory effect against cancer cells to be considered as a promising candidate for cancer treatment investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

BUN:

Blood Urea Nitrogen

CLSM:

Confocal laser scanning microscopy

Cr:

Creatinine

DL:

Drug loading

DMSO:

Dimethyl sulfoxide

EE:

Entrapment efficiency

FBS:

Fetal Bovine Serum

Hb:

Hemoglobin

HO:

Heme oxygenase

LDH:

Lactate dehydrogenase

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

NADPH:

Nicotinamide adenine dinucleotide phosphate

NPs:

Nanoparticles

PBS:

Phosphate buffer saline

PDI:

Poly Dispersity Index

PLGA:

Poly lactic-co-glycolic acid

RBC:

Red Blood cells

ROS:

Reactive Oxygen Species

RPMI:

1640 Roswell Park Memorial Institute medium

SEM:

Scanning electron microscopy

WBC:

White Blood Cells

ZnPP:

Zinc protoporphyrin IX (ZnPP)

References

  1. Haley B, Frenkel E, editors. Nanoparticles for drug delivery in cancer treatment. Urol Oncol: Seminars and original investigations. Elsevier; 2008.

  2. Sanvicens N, Marco MP. Multifunctional nanoparticles–properties and prospects for their use in human medicine. Trends Biotechnol. 2008;26(8):425–33.

    Article  CAS  PubMed  Google Scholar 

  3. Oberley TD. Oxidative damage and cancer. Am J Pathol. 2002;160(2):403.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Poli G, Leonarduzzi G, Biasi F, Chiarpotto E. Oxidative stress and cell signalling. Curr Med Chem. 2004;11(9):1163–82.

    Article  CAS  PubMed  Google Scholar 

  5. Gupte A, Mumper RJ. Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat Rev. 2009;35(1):32–46.

    Article  CAS  PubMed  Google Scholar 

  6. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004;266(1–2):37–56.

    Article  CAS  PubMed  Google Scholar 

  7. Kondo S, Toyokuni S, Iwasa Y, Tanaka T, Onodera H, Hiai H, et al. Persistent oxidative stress in human colorectal carcinoma, but not in adenoma. Free Radic Biol Med. 1999;27(3):401–10.

    Article  CAS  PubMed  Google Scholar 

  8. Was H, Dulak J, Jozkowicz A. Heme oxygenase-1 in tumor biology and therapy. Curr Drug Targets. 2010;11(12):1551–70.

    Article  CAS  PubMed  Google Scholar 

  9. Pervaiz S, Clement M-V. Tumor intracellular redox status and drug resistance-serendipity or a causal relationship. Curr Pharm Des. 2004;10(16):1969–77.

    Article  CAS  PubMed  Google Scholar 

  10. Powis G, Gasdaska JR, Baker A. Redox signaling and the control of cell growth and death. Adv Pharmacol. 1996;38:329–59.

    Article  Google Scholar 

  11. Fang J, Seki T, Maeda H. Therapeutic strategies by modulating oxygen stress in cancer and inflammation. Adv Drug Deliv Rev. 2009;61(4):290–302.

    Article  CAS  PubMed  Google Scholar 

  12. Sawa T, Wu J, Akaike T, Maeda H. Tumor-targeting chemotherapy by a xanthine oxidase-polymer conjugate that generates oxygen-free radicals in tumor tissue. Cancer Res. 2000;60(3):666–71.

    CAS  PubMed  Google Scholar 

  13. Fang J, Sawa T, Akaike T, Maeda H. Tumor-targeted delivery of polyethylene glycol-conjugated D-amino acid oxidase for antitumor therapy via enzymatic generation of hydrogen peroxide. Cancer Res. 2002;62(11):3138–43.

    CAS  PubMed  Google Scholar 

  14. Kinobe RT, Dercho RA, Nakatsu K. Inhibitors of the heme oxygenase-carbon monoxide system: on the doorstep of the clinic. Can J Physiol Pharmacol. 2008;86(9):577–99.

    Article  CAS  PubMed  Google Scholar 

  15. Fang J, Akaike T, Maeda H. Antiapoptotic role of heme oxygenase (HO) and the potential of HO as a target in anticancer treatment. Apoptosis. 2004;9(1):27–35.

    Article  CAS  PubMed  Google Scholar 

  16. Sahoo S, Sawa T, Fang J, Tanaka S, Miyamoto Y, Akaike T, et al. Pegylated zinc protoporphyrin: a water-soluble heme oxygenase inhibitor with tumor-targeting capacity. Bioconjug Chem. 2002;13(5):1031–8.

    Article  CAS  PubMed  Google Scholar 

  17. Fang J, Sawa T, Akaike T, Akuta T, Sahoo SK, Khaled G, et al. In vivo antitumor activity of Pegylated zinc protoporphyrin targeted inhibition of heme oxygenase in solid tumor. Cancer Res. 2003;63(13):3567–74.

    CAS  PubMed  Google Scholar 

  18. Fang J, Sawa T, Akaike T, Greish K, Maeda H. Enhancement of chemotherapeutic response of tumor cells by a heme oxygenase inhibitor, pegylated zinc protoporphyrin. Int J Cancer. 2004;109(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  19. Iyer AK, Greish K, Fang J, Murakami R, Maeda H. High-loading nanosized micelles of copoly (styrene–maleic acid)–zinc protoporphyrin for targeted delivery of a potent heme oxygenase inhibitor. Biomaterials. 2007;28(10):1871–81.

    Article  CAS  PubMed  Google Scholar 

  20. Iyer AK, Greish K, Seki T, Okazaki S, Fang J, Takeshita K, et al. Polymeric micelles of zinc protoporphyrin for tumor targeted delivery based on EPR effect and singlet oxygen generation. J Drug Target. 2007;15(7–8):496–506.

    Article  CAS  PubMed  Google Scholar 

  21. Regehly M, Greish K, Rancan F, Maeda H, Böhm F, Röder B. Water-soluble polymer conjugates of ZnPP for photodynamic tumor therapy. Bioconjug Chem. 2007;18(2):494–9.

    Article  CAS  PubMed  Google Scholar 

  22. Ding H, Sumer BD, Kessinger CW, Dong Y, Huang G, Boothman DA, et al. Nanoscopic micelle delivery improves the photophysical properties and efficacy of photodynamic therapy of protoporphyrin IX. J Control Release. 2011;151(3):271–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Fang J, Nakamura H, Iyer A. Tumor-targeted induction of oxystress for cancer therapy. J Drug Target. 2007;15(7–8):475–86.

    Article  CAS  PubMed  Google Scholar 

  24. Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev. 2008;60(15):1615–26.

    Article  CAS  PubMed  Google Scholar 

  25. Davis ME. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9):771–82.

    Article  CAS  PubMed  Google Scholar 

  26. Dinarvand R, Sepehri N, Manoochehri S, Rouhani H, Atyabi F. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int J Nanomedicine. 2011;6:877.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Maines MD. Zinc protoporphyrin is a selective inhibitor of heme oxygenase activity in the neonatal rat. Biochim et Biophys Acta (BBA)-General Subjects. 1981;673:339–50.

    Article  CAS  Google Scholar 

  28. Drummond GS, Kappas A. Prevention of neonatal hyperbilirubinemia by tin protoporphyrin IX, a potent competitive inhibitor of heme oxidation. Proc Natl Acad Sci. 1981;78(10):6466–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Abdelwahed W, Degobert G, Stainmesse S, Fessi H. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev. 2006;58(15):1688–713.

    Article  CAS  PubMed  Google Scholar 

  30. Saez A, Guzman M, Molpeceres J, Aberturas M. Freeze-drying of polycaprolactone and poly (D, L-lactic-glycolic) nanoparticles induce minor particle size changes affecting the oral pharmacokinetics of loaded drugs. Eur J Pharm Biopharm. 2000;50(3):379–87.

    Article  CAS  PubMed  Google Scholar 

  31. Bozdag S, Dillen K, Vandervoort J, Ludwig A. The effect of freeze-drying with different cryoprotectants and gamma-irradiation sterilization on the characteristics of ciprofloxacin HCl-loaded poly (D, L-lactide-glycolide) nanoparticles. J Pharm Pharmacol. 2005;57(6):699–707.

    Article  CAS  PubMed  Google Scholar 

  32. Bilati U, Allémann E, Doelker E. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci. 2005;24(1):67–75.

    Article  CAS  PubMed  Google Scholar 

  33. Deming SN. Multiple-criteria optimization. J Chromatogr A. 1991;550:15–25.

    Article  CAS  Google Scholar 

  34. Maines MD, Kappas A. Cobalt stimulation of heme degradation in the liver. Dissociation of microsomal oxidation of heme from cytochrome P-450. J Biol Chem. 1975;250(11):4171–7.

    CAS  PubMed  Google Scholar 

  35. Sun B, Ranganathan B, Feng S-S. Multifunctional poly (d, l-lactide-co-glycolide)/montmorillonite (PLGA/MMT) nanoparticles decorated by Trastuzumab for targeted chemotherapy of breast cancer. Biomaterials. 2008;29(4):475–86.

    Article  PubMed  Google Scholar 

  36. Esmaeili F, Dinarvand R, Ghahremani MH, Ostad SN, Esmaily H, Atyabi F. Cellular cytotoxicity and in-vivo biodistribution of docetaxel poly (lactide-co-glycolide) nanoparticles. Anticancer Drugs. 2010;21(1):43–52.

    Article  CAS  PubMed  Google Scholar 

  37. Jin C, Bai L, Wu H, Song W, Guo G, Dou K. Cytotoxicity of paclitaxel incorporated in PLGA nanoparticles on hypoxic human tumor cells. Pharm Res. 2009;26(7):1776–84.

    Article  CAS  PubMed  Google Scholar 

  38. Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, et al. Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials. 2007;28(5):869–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Hao J, Fang X, Zhou Y, Wang J, Guo F, Li F, et al. Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design. Int J Nanomedicine. 2011;6:683.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Sabzevari A, Adibkia K, Hashemi H, Hedayatfar A, Mohsenzadeh N, Atyabi F, et al. Polymeric triamcinolone acetonide nanoparticles as a new alternative in the treatment of uveitis: In vitro and in vivo studies. Eur J Pharm Biopharm. 2013.

  41. Mu L, Feng S-S. PLGA/TPGS nanoparticles for controlled release of paclitaxel: effects of the emulsifier and drug loading ratio. Pharm Res. 2003;20(11):1864–72.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang L, Yang M, Wang Q, Li Y, Guo R, Jiang X, et al. 10-Hydroxycamptothecin loaded nanoparticles: preparation and antitumor activity in mice. J Control Release. 2007;119(2):153–62.

    Article  CAS  PubMed  Google Scholar 

  43. Vauthier C, Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res. 2009;26(5):1025–58.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Authors would like to express their profound thanks to Mr. A.R. Kazemi for his technical assistance in animal experiments. This work is a part PhD thesis of first author and was financially supported by a grant from Tehran University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rassoul Dinarvand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rouhani, H., Sepehri, N., Montazeri, H. et al. Zinc Protoporphyrin Polymeric Nanoparticles: Potent Heme Oxygenase Inhibitor for Cancer Therapy. Pharm Res 31, 2124–2139 (2014). https://doi.org/10.1007/s11095-014-1313-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1313-7

KEY WORDS

Navigation