Skip to main content

Advertisement

Log in

Mono and Dually Decorated Nanoliposomes for Brain Targeting, In Vitro and In Vivo Studies

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Mono- and dual-decorated (DUAL) liposomes (LIP) were prepared, by immobilization of MAb against transferrin (TfR[OX26 or RI7217]) and/or a peptide analogue of ApoΕ3 (APOe) -to target low-density lipoprotein receptor(LPR)-, characterized physicochemically and investigated for BBB-targeting, in-vitro and in-vivo.

Methods

Human microvascular endothelial cells (hCMEC/D3) were used as BBB model, and brain targeting was studied by in-vivo imaging of DiR-labelled formulations (at two doses and surface ligand densities), followed by ex-vivo organ imaging.

Results

LIP diameter was between 100 nm and 150 nm, their stability was good and they were non-cytotoxic. LIP uptake and transport across the hCMEC/D3 cell monolayer was significantly affected by decoration with APOe or MAb, the DUAL exerting an additive effect. Intact vesicle-transcytosis was confirmed by equal transport of hydrophilic and lipophilic labels. In-vivo and ex-vivo results confirmed MAb and DUAL-LIP increased brain targeting compared to non-targeted PEG-LIPs, but not for APOe (also targeting ability of DUAL-LIP was not higher than MAb-LIP). The contradiction between in-vitro and in-vivo results was overruled when in-vitro studies (uptake and monolayer transport) were carried out in presence of serum proteins, revealing their important role in targeted-nanoformulation performance.

Conclusions

A peptide analogue of ApoΕ3 was found to target BBB and increase the targeting potential of TfR-MAb decorated LIP, in-vitro, but not in-vivo, indicating that different types of ligands (small peptides and antibodies) are affected differently by in-vivo applying conditions. In-vitro tests, carried out in presence of serum proteins, may be a helpful predictive “targetability” tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pardridge WM. Drug transport across the blood–brain barrier. J Cerebral Blood Flow Metabolism. 2012;32:1959–72.

    Article  CAS  Google Scholar 

  2. Lu W, Xiong C, Zhang R, Shi L, Huang M, Zhang G, et al. Receptor-mediated transcytosis: A mechanism for active extravascular transport of nanoparticles in solid tumors. J Control Release. 2012;161:959–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Paliwal SR, Paliwa R, Agrawa GP, Vyas SP. Targeted breast cancer nanotherapeutics: options and opportunities with estrogen receptors. Critl Rev in Therap Drug Carrier Syst. 2012;29:421–46.

    Article  CAS  Google Scholar 

  4. Ghosh SC, Neslihan AS, Klostergaard J. CD44: A validated target for improved delivery of cancer therapeutics. Exp Opinion on Therap Targets. 2012;16:635–50.

    Article  CAS  Google Scholar 

  5. Jiang X, Sha X, Xin H, Chen L, Gao X, Wang X, et al. Self-aggregated pegylated poly (trimethylene carbonate) nanoparticles decorated with c(RGDyK) peptide for targeted paclitaxel delivery to integrin-rich tumors. Biomaterials. 2011;32:9457–69.

    Article  CAS  PubMed  Google Scholar 

  6. Wang Z, Yu Y, Dai W, Cui J, Wu H, Yuan L, et al. A specific peptide ligand-modified lipid nanoparticle carrier for the inhibition of tumor metastasis growth. Biomaterials. 2013;34(3):756–64.

    Article  CAS  PubMed  Google Scholar 

  7. Gomes-Da-Silva LC, Santos AO, Bimbo LM, Moura V, Ramalho JS, Pedroso De Lima MC, et al. Toward a siRNA-containing nanoparticle targeted to breast cancer cells and the tumor microenvironment. Int J Pharma. 2012;434:9–19.

    Article  CAS  Google Scholar 

  8. Xin H, Sha X, Jiang X, Chen L, Law K, Gu J, et al. The brain targeting mechanism of Angiopep-conjugated poly(ethylene glycol)-co-poly(e{open}-caprolactone) nanoparticles. Biomaterials. 2012;33(5):1673–81.

    Article  CAS  PubMed  Google Scholar 

  9. Pardridge WM. Drug targeting to the brain. Pharm Res. 2007;24:1733–44.

    Article  CAS  PubMed  Google Scholar 

  10. Lalani J, Raichandani Y, Mathur R, Lalan M, Chutani K, Mishra AK, et al. Comparative receptor based brain delivery of tramadol-loaded poly(lactic-co-glycolic acid) nanoparticles. J Biomed Nanotech. 2012;8(6):918–27.

    Article  CAS  Google Scholar 

  11. Xia H, Gao X, Gu G, Liu Z, Hu Q, Tu Y, et al. Penetration-functionalized PEG-PLA nanoparticles for brain drug delivery. Int J Pharmac. 2012;436:840–50.

    Article  CAS  Google Scholar 

  12. López-Dávila V, Seifalian AM, Loizidou M. Organic nanocarriers for cancer drug delivery. Curr Opinion Pharmacol. 2012;12(4):414–9.

    Article  Google Scholar 

  13. Antimisiaris SG, Kallinteri P, Fatouros D. Liposomes and drug delivery, In: S.C. Gad editor, Pharmaceutical Manufacturing Handbook Production and Processes, John Wiley & Sons, 2008, pp. 443-533.

  14. Markoutsa E, Pampalakis G, Niarakis A, Romero IA, Weksler B, Couraud P-O, et al. Uptake and permeability studies of BBB-targeting immunoliposomes using the hCMEC/D3 cell line. Eur J Pharmaceut Biopharma. 2011;77(2):265–74.

    Article  CAS  Google Scholar 

  15. Xiang Y, Liang L, Wang X, Wang J, Zhang X, Zhang Q. Chloride channel-mediated brain glioma targeting of chlorotoxin-modified doxorubicine-loaded liposomes. J Control Release. 2011;152:402–10.

    Article  CAS  PubMed  Google Scholar 

  16. Kluza E, Jacobs I, Hectors SJCG, Mayo KH, Griffoen AW, Strijkers GJ, et al. Dual-targeting of ανβ3 and galectin-1 improves the specificity of paramagnetic/fluorescent liposomes to tumor endothelium in vivo. J Control Release. 2012;158:207–14.

    Article  CAS  PubMed  Google Scholar 

  17. Ying X, Wen H, Lu W-L, Du J, Guo J, Tian W, et al. Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Control Release. 2010;141(2):183–92.

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, He H, Jia X, Lu W-L, Lou J, Wei Y. A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas. Biomaterials. 2012;33(15):3899–908.

    Article  CAS  PubMed  Google Scholar 

  19. Kibria G, Hatakeyama H, Ohga N, Hida K, Harashima H. Dual-ligand modification of PEGylated liposomes shows better selectivity and efficient gene delivery. J Control Release. 2011;153(2):141–8.

    Article  CAS  PubMed  Google Scholar 

  20. Bae S, Ma K, Kim TH, Lee ES, Oh KT, Park E-S, et al. Doxorubicin-loaded human serum albumin nanoparticles surface-modified with TNF-related apoptosis-inducing ligand and transferrin for targeting multiple tumor types. Biomaterials. 2012;33(5):1536–46.

    Article  CAS  PubMed  Google Scholar 

  21. Gao H, Qian J, Cao S, Yang Z, Pang Z, Pan S, et al. Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles. Biomaterials. 2012;33(20):5115–23.

    Article  CAS  PubMed  Google Scholar 

  22. Papademetriou T, Garnacho C, Schuchman EH, Muro S. In vivo performance of polymer nanocarriers dually-targeted to epitopes of the same or different receptors. Biomaterials. 2013;34:3459–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Ulbrich K, Hekmatara T, Herbert E, Kreuter J. Transferrin- and transferring-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). Eur J Pharm Biopharm. 2009;71:251–6.

    Article  CAS  PubMed  Google Scholar 

  24. Schnyder A, Huwyler J. Drug transport to brain with targeted Liposomes. NeuroRx. 2005;2:99–107.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Markoutsa E, Papadia K, Clemente C, Flores O, Antimisiaris SG. Anti-Aβ-MAb and dually decorated nanoliposomes: Effect of Aβ1-42 peptides on interaction with hCMEC/D3 cells. Eur J Pharm Biopharm. 2012;81(1):49–56.

    Article  CAS  PubMed  Google Scholar 

  26. Pardridge WM. Tyrosine hydroxylase replacement in experimental Parkinson’s disease with transvascular gene therapy. NeuroRx. 2005;2(1):129–38.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Re F, Cambianica I, Zona C, Sesana S, Gregori M, Rigolio R, et al. Functionalization of liposomes with ApoE-derived peptides at different density affects cellular uptake and drug transport across a blood-brain barrier model. Nanomed Nanotech Biol Med. 2011;7(5):551–9.

    Article  CAS  Google Scholar 

  28. Re F, Cambianica I, Sesana S, Salvati E, Cagnotto A, Salmona M, et al. Functionalization with ApoE-derived peptides enhances the interaction with brain capillary endothelial cells of nanoliposomes binding amyloid-beta peptide. J Biotechnol. 2010;156(4):341–6.

    Article  PubMed  Google Scholar 

  29. Salvati A, Pitek AS, Monopoli MP, Prapainop K, Baldelli Bombelli F, Hristov DR, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nature Nanotech. 2013;8:137–43.

    Article  CAS  Google Scholar 

  30. Weksler BB, Subileau EA, Perriere N, Charneau P, Holloway K, Leveque M, et al. Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 2005;19:1872–4.

    CAS  PubMed  Google Scholar 

  31. Poller R, Gutman H, Krahenbuhl S, Weksler B, Romero I, Couraud PO, et al. The human brain endothelial cell line hCMEC/D3 as a human blood-brain barrier model for drug transport studies. J Neurochem. 2008;107:1358–68.

    Article  CAS  PubMed  Google Scholar 

  32. Brambilla D, Nicolas J, Le Droumaguet B, Andrieux K, Marsaud V, Couraud P-O, et al. Design of fluorescently tagged poly(alkyl cyanoacrylate) nanoparticles for human brain endothelial cell imaging. Chem Commun. 2010;46:2602–4.

    Article  CAS  Google Scholar 

  33. Kaasgaard T, Mouritsen OG, Jørgensen K. Receptor mediated binding of avidin to polymer covered liposomes. J Liposome Res. 2001;11(1):31–42.

    Article  CAS  PubMed  Google Scholar 

  34. Stewart JCM. Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem. 1980;104:10–4.

    Article  CAS  PubMed  Google Scholar 

  35. Kokona M, Kallinteri P, Fatouros D, Antimisiaris SG. Stability of SUV liposomes in the presence of cholate salts and pancreatic lipases: effect of lipid composition. Eur J Pharm Sciences. 2000;9:245–52.

    Article  Google Scholar 

  36. Zhang Y, Zhu C, Pardridge WM. Antisence gene therapy of brain cancer with an artificial virus gene delivery system. Mol Ther. 2002;6:67–72.

    Article  CAS  PubMed  Google Scholar 

  37. Tan PH, Manunta M, Ardjomand N, Xue SA, Larkin DF, Haskard DO, et al. Antibody targeted gene transfer to endothelium. J Gene Med. 2003;5:311–23.

    Article  CAS  PubMed  Google Scholar 

  38. Kalchenko V, Shivtiel S, Malina V, Lapid K, Haramati S, Lapidot T, et al. Use of lipophilic near-infrared dye in whole-body optical imaging of hematopoietic cell homing. J Biomed Opt. 2006;11(5):505–7.

    Article  Google Scholar 

  39. Kreuter J. Influence of the surface properties on nanoparticle mediated transport of drugs to the brain. J Nanosci Nanotechnol. 2004;4:484–8.

    Article  CAS  PubMed  Google Scholar 

  40. Kreuter J, Shamenkov D, Petrov V, Ramge P, Cychutek K, Koch- Brandt C, et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood–brain barrier. J Drug Target. 2002;10:317–25.

    Article  CAS  PubMed  Google Scholar 

  41. Chang J, Paillard A, Passirani C, Morille M, Benoit J-P, Betbeder D, et al. Transferrin adsorption onto PLGA nanoparticles governs their interaction with biological systems from blood circulation to brain cancer cells. Pharm Research. 2012;29(6):1495–505.

    Article  CAS  Google Scholar 

  42. Elias DR, Poloukhtine A, Popik V, Tsourkas A. Effect of ligand density, receptor density, and nanoparticle size on cell targeting. Nanomed Nanotech Biol Med. 2012;9:194–201.

    Article  Google Scholar 

  43. Zheng X, Cheung LS, Schroeder JA, Jiang L, Zohar Y. Cell receptor and surface ligand density effects on dynamic states of adhering circulating tumor cells. Lab Chip. 2011;11(20):3431–9.

    Article  CAS  PubMed  Google Scholar 

  44. Yuan H, Zhang S. Effects of particle size and ligand density on the kinetics of receptor-mediated endocytosis of nanoparticles. Appl Phys Lett. 2010;96(3):0337041–3.

    Article  Google Scholar 

  45. Gunawan RC, Auguste DT. The role of antibody synergy and membrane fluidity in the vascular targeting of immunoliposomes. Biomaterials. 2010;31(5):900–7.

    Article  CAS  PubMed  Google Scholar 

  46. Srivastava RAK, Ito H, Hess M, Srivastava N, Schonfeld G. Regulation of low density lipoprotein receptor gene expression in HepG2 and Caco2 cells by palmitate, oleate, and 25-hydroxycholesterol. J Lipid Research. 1995;36:1434–46.

    CAS  Google Scholar 

  47. Keck CM, Jansch M, Müller RH. Protein adsorption patterns and analysis on IV Nanoemulsions—The key factor determining the organ distribution. Pharmaceutics. 2013;5:36–68.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments and Disclosures

E. Markoutsa and K. Papadia equally contributed to this paper. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007–2013) under grant agreements n° 212043 (to SGA) and 260524 (to GTS). Authors are grateful to Dr. Pierre-Oliver Couraud (Inserm, Paris, FR) for providing the hCMEC/D3 cell line, and Dr. M Gregori (University Milano-Biccoca, Milan, IT) for her help in MAb thiolation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Antimisiaris.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 125 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markoutsa, E., Papadia, K., Giannou, A.D. et al. Mono and Dually Decorated Nanoliposomes for Brain Targeting, In Vitro and In Vivo Studies. Pharm Res 31, 1275–1289 (2014). https://doi.org/10.1007/s11095-013-1249-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1249-3

Keywords

Navigation