Skip to main content

Advertisement

Log in

Drug Delivery Systems for the Treatment of Ischemic Stroke

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Stroke is the third leading cause of death in the United States. Reduced cerebral blood flow causes acute damage to the brain due to excitotoxicity, reactive oxygen species (ROS), and ischemia. Currently, the main treatment for stroke is to revive the blood flow by using thrombolytic agents. Reviving blood flow also causes ischemia-reperfusion (I/R) damage. I/R damage results from inflammation and apoptosis and can persist for days to weeks, increasing the infarct size. Drugs can be applied to stroke to intervene in the sub-acute and chronic phases. Chemical, peptide, and genetic therapies have been evaluated to reduce delayed damage to the brain. These drugs have different characteristics, requiring that delivery carriers be developed based on these characteristics. The delivery route is another important factor affecting the efficiency of drug delivery. Various delivery routes have been developed, such as intravenous injection, intranasal administration, and local direct injection to overcome the blood-brain-barrier (BBB). In this review, the delivery carriers and delivery routes for peptide and gene therapies are discussed and examples are provided. Combined with new drugs, drug delivery systems will eventually provide useful treatments for ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. Sims NR, Muyderman H. Mitochondria, oxidative metabolism and cell death in stroke. Biochim Biophys Acta. 2010;1802:80–91.

    PubMed  CAS  Google Scholar 

  2. Thom T, Haase N, Rosamond W, Howard VJ, Rumsfeld J, Manolio T, Zheng ZJ, Flegal K, O’Donnell C, Kittner S, Lloyd-Jones D, Goff Jr DC, Hong Y, Adams R, Friday G, Furie K, Gorelick P, Kissela B, Marler J, Meigs J, Roger V, Sidney S, Sorlie P, Steinberger J, Wasserthiel-Smoller S, Wilson M, Wolf P. Heart disease and stroke statistics–2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2006;113:e85–151.

    PubMed  Google Scholar 

  3. Donnan GA, Fisher M, Macleod M, Davis SM. Stroke Lancet. 2008;371:1612–23.

    CAS  Google Scholar 

  4. Shuaib A, Hachinski VC. Mechanisms and management of stroke in the elderly. Cmaj. 1991;145:433–43.

    PubMed  CAS  Google Scholar 

  5. Anderson CS, Huang Y, Arima H, Heeley E, Skulina C, Parsons MW, Peng B, Li Q, Su S, Tao QL, Li YC, Jiang JD, Tai LW, Zhang JL, Xu E, Cheng Y, Morgenstern LB, Chalmers J, Wang JG. Effects of early intensive blood pressure-lowering treatment on the growth of hematoma and perihematomal edema in acute intracerebral hemorrhage: the Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT). Stroke. 2010;41:307–12.

    PubMed  Google Scholar 

  6. Rasool AH, Rahman AR, Choudhury SR, Singh RB. Blood pressure in acute intracerebral haemorrhage. J Hum Hypertens. 2004;18:187–92.

    PubMed  CAS  Google Scholar 

  7. M.M. Montaner J, Delgado P, García-Berrocoso T, Giralt D, Merino C, Ribó M, Rosell A, Penalba A, Fernández-Cadenas I, Romero F, Molina C, Alvarez-Sabín J, Hernández-Guillamon M. Differentiating ischemic from hemorrhagic stroke using plasma biomarkers: the S100B/RAGE pathway. J Proteom. 2012;75:4758–65.

  8. Oliveira-Filho J, Silva SC, Trabuco CC, Pedreira BB, Sousa EU, Bacellar A. Detrimental effect of blood pressure reduction in the first 24 hours of acute stroke onset. Neurology. 2003;61:1047–51.

    PubMed  CAS  Google Scholar 

  9. Vlcek M, Schillinger M, Lang W, Lalouschek W, Bur A, Hirschl MM. Association between course of blood pressure within the first 24 hours and functional recovery after acute ischemic stroke. Ann Emerg Med. 2003;42:619–26.

    PubMed  Google Scholar 

  10. Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Eng J Med. 1995;333:1581–1587.

    Google Scholar 

  11. Pardridge WM. Brain drug targeting and gene technologies. Japanese Journal of Pharmacology. 2001;87:97–103.

    PubMed  CAS  Google Scholar 

  12. Choi DW, Rothman SM. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci. 1990;13:171–82.

    PubMed  CAS  Google Scholar 

  13. Rego AC, Oliveira CR. Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem Res. 2003;28:1563–74.

    PubMed  CAS  Google Scholar 

  14. Fagan SC, Hess DC, Hohnadel EJ, Pollock DM, Ergul A. Targets for vascular protection after acute ischemic stroke. Stroke. 2004;35:2220–5.

    PubMed  CAS  Google Scholar 

  15. Kim JB, Sig Choi J, Yu YM, Nam K, Piao CS, Kim SW, Lee MH, Han PL, Park JS, Lee JK. HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci. 2006;26:6413–21.

    PubMed  CAS  Google Scholar 

  16. Kim JB, Lim CM, Yu YM, Lee JK. Induction and subcellular localization of high-mobility group box-1 (HMGB1) in the postischemic rat brain. J Neurosci Res. 2008;86:1125–31.

    PubMed  CAS  Google Scholar 

  17. Qiu J, Nishimura M, Wang Y, Sims JR, Qiu S, Savitz SI, Salomone S, Moskowitz MA. Early release of HMGB-1 from neurons after the onset of brain ischemia. J Cereb Blood Flow Metab. 2008;28:927–38.

    PubMed  CAS  Google Scholar 

  18. Dohrmann GJ. The choroid plexus: a historical review. Brain Res. 1970;18:197–218.

    PubMed  CAS  Google Scholar 

  19. Pardridge WM. Drug and gene delivery to the brain: the vascular route. Neuron. 2002;36:555–8.

    PubMed  CAS  Google Scholar 

  20. Pardridge WM. Blood-brain barrier drug targeting: the future of brain drug development. Molecular Interventions. 2003;3:90–105.

    PubMed  CAS  Google Scholar 

  21. Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD. Blood-brain barrier: structural components and function under physiologic and pathologic conditions. Journal of Neuroimmune Pharmacology: the Official Journal of the Society on NeuroImmune Pharmacology. 2006;1:223–36.

    Google Scholar 

  22. Balda MS, Matter K. Tight junctions. Journal of Cell Science. 1998;111(Pt 5):541–7.

    PubMed  CAS  Google Scholar 

  23. Schnittler HJ. Structural and functional aspects of intercellular junctions in vascular endothelium. Basic Research in Cardiology. 1998;93 Suppl 3:30–9.

    PubMed  Google Scholar 

  24. Erickson KK, Sundstrom JM, Antonetti DA. Vascular permeability in ocular disease and the role of tight junctions. Angiogenesis. 2007;10:103–17.

    PubMed  Google Scholar 

  25. Weiss N, Miller F, Cazaubon S, Couraud PO. The blood-brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta. 2009;1788:842–57.

    PubMed  CAS  Google Scholar 

  26. Spector R. Drug transport in the mammalian central nervous system: multiple complex systems. A critical analysis and commentary. Pharmacology. 2000;60:58–73.

    PubMed  CAS  Google Scholar 

  27. Spector R, Johanson CE. The mammalian choroid plexus. Sci Am. 1989;261:68–74.

    PubMed  CAS  Google Scholar 

  28. Ghersi-Egea JF, Strazielle N. Brain drug delivery, drug metabolism, and multidrug resistance at the choroid plexus. Microsc Res Tech. 2001;52:83–8.

    PubMed  CAS  Google Scholar 

  29. el-Bacha RS, Minn A. Drug metabolizing enzymes in cerebrovascular endothelial cells afford a metabolic protection to the brain. Cell Mol Biol. 1999;45:15–23.

    PubMed  CAS  Google Scholar 

  30. Choudhuri S, Cherrington NJ, Li N, Klaassen CD. Constitutive expression of various xenobiotic and endobiotic transporter mRNAs in the choroid plexus of rats. Drug Metab Dispos. 2003;31:1337–45.

    PubMed  CAS  Google Scholar 

  31. Toyoda K, Chu Y, Heistad DD. Gene therapy for cerebral vascular disease: update 2003. Br J Pharmacol. 2003;139:1–9.

    PubMed  CAS  Google Scholar 

  32. Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev. 2007;54:34–66.

    PubMed  CAS  Google Scholar 

  33. Shimamura M, Sato N, Morishita R. Experimental and clinical application of plasmid DNA in the field of central nervous diseases. Current Gene Therapy. 2011;11:491–500.

    PubMed  CAS  Google Scholar 

  34. Yamada M, Ohnishi H, Sano S, Araki T, Nakatani A, Ikeuchi T, Hatanaka H. Brain-derived neurotrophic factor stimulates interactions of Shp2 with phosphatidylinositol 3-kinase and Grb2 in cultured cerebral cortical neurons. J Neurochem. 1999;73:41–9.

    PubMed  CAS  Google Scholar 

  35. Ohsawa F, Widmer HR, Knusel B, Denton TL, Hefti F. Response of embryonic rat hippocampal neurons in culture to neurotrophin-3, brain-derived neurotrophic factor and basic fibroblast growth factor. Neuroscience. 1993;57:67–77.

    PubMed  CAS  Google Scholar 

  36. Cheng YD, Al-Khoury L, Zivin JA. Neuroprotection for ischemic stroke: two decades of success and failure. NeuroRx. 2004;1:36–45.

    PubMed  Google Scholar 

  37. Cowan WM. Viktor Hamburger and Rita Levi-Montalcini: the path to the discovery of nerve growth factor. Annu Rev Neurosci. 2001;24:551–600.

    PubMed  CAS  Google Scholar 

  38. Hallbook F, Ibanez CF, Persson H. Evolutionary studies of the nerve growth factor family reveal a novel member abundantly expressed in Xenopus ovary. Neuron. 1991;6:845–58.

    PubMed  CAS  Google Scholar 

  39. Chao MV, Bothwell M. Neurotrophins: to cleave or not to cleave. Neuron. 2002;33:9–12.

    PubMed  CAS  Google Scholar 

  40. Bibel M, Barde YA. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev. 2000;14:2919–37.

    PubMed  CAS  Google Scholar 

  41. Barbacid M. The Trk family of neurotrophin receptors. J Neurobiol. 1994;25:1386–403.

    PubMed  CAS  Google Scholar 

  42. Lee TH, Kato H, Chen ST, Kogure K, Itoyama Y. Expression of nerve growth factor and trkA after transient focal cerebral ischemia in rats. Stroke. 1998;29:1687–96. discussion 1697.

    PubMed  CAS  Google Scholar 

  43. Duan W, Guo Z, Jiang H, Ware M, Li XJ, Mattson MP. Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proc Natl Acad Sci USA. 2003;100:2911–6.

    PubMed  CAS  Google Scholar 

  44. Peng CH, Chiou SH, Chen SJ, Chou YC, Ku HH, Cheng CK, Yen CJ, Tsai TH, Chang YL, Kao CL. Neuroprotection by Imipramine against lipopolysaccharide-induced apoptosis in hippocampus-derived neural stem cells mediated by activation of BDNF and the MAPK pathway. European Neuropsychopharmacology: the Journal of the European College of Neuropsychopharmacology. 2008;18:128–40.

    CAS  Google Scholar 

  45. Sauer H, Fischer W, Nikkhah G, Wiegand SJ, Brundin P, Lindsay RM, Bjorklund A. Brain-derived neurotrophic factor enhances function rather than survival of intrastriatal dopamine cell-rich grafts. Brain Res. 1993;626:37–44.

    PubMed  CAS  Google Scholar 

  46. Wu D, Pardridge WM. Neuroprotection with noninvasive neurotrophin delivery to the brain. Proc Natl Acad Sci USA. 1999;96:254–9.

    PubMed  CAS  Google Scholar 

  47. Tsukahara T, Yonekawa Y, Tanaka K, Ohara O, Wantanabe S, Kimura T, Nishijima T, Taniguchi T. The role of brain-derived neurotrophic factor in transient forebrain ischemia in the rat brain. Neurosurgery. 1994;34:323–31. discussion 331.

    PubMed  CAS  Google Scholar 

  48. Beck T, Lindholm D, Castren E, Wree A. Brain-derived neurotrophic factor protects against ischemic cell damage in rat hippocampus. J Cereb Blood Flow Metab. 1994;14:689–92.

    PubMed  CAS  Google Scholar 

  49. Schabitz WR, Schwab S, Spranger M, Hacke W. Intraventricular brain-derived neurotrophic factor reduces infarct size after focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 1997;17:500–6.

    PubMed  CAS  Google Scholar 

  50. Yamashita K, Wiessner C, Lindholm D, Thoenen H, Hossmann KA. Post-occlusion treatment with BDNF reduces infarct size in a model of permanent occlusion of the middle cerebral artery in rat. Metab Brain Dis. 1997;12:271–80.

    PubMed  CAS  Google Scholar 

  51. Andsberg G, Kokaia Z, Klein RL, Muzyczka N, Lindvall O, Mandel RJ. Neuropathological and behavioral consequences of adeno-associated viral vector-mediated continuous intrastriatal neurotrophin delivery in a focal ischemia model in rats. Neurobiol Dis. 2002;9:187–204.

    PubMed  CAS  Google Scholar 

  52. Gustafsson E, Andsberg G, Darsalia V, Mohapel P, Mandel RJ, Kirik D, Lindvall O, Kokaia Z. Anterograde delivery of brain-derived neurotrophic factor to striatum via nigral transduction of recombinant adeno-associated virus increases neuronal death but promotes neurogenic response following stroke. Eur J Neurosci. 2003;17:2667–78.

    PubMed  Google Scholar 

  53. Nomura T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. I.V. infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Neurosci. 2005;136:161–9.

    CAS  Google Scholar 

  54. Zhang J, Yu Z, Yang Z, Zhao H, Liu L, Zhao J. rAAV-mediated delivery of brain-derived neurotrophic factor promotes neurite outgrowth and protects neurodegeneration in focal ischemic model. Int J Clin Exp Pathol. 2011;4:496–504.

    PubMed  CAS  Google Scholar 

  55. Zhang Y, Dijkhuizen PA, Anderson PN, Lieberman AR, Verhaagen J. NT-3 delivered by an adenoviral vector induces injured dorsal root axons to regenerate into the spinal cord of adult rats. J Neurosci Res. 1998;54:554–62.

    PubMed  CAS  Google Scholar 

  56. Bradbury EJ, Khemani S, King VR, Priestley JV, McMahon SB. NT-3 promotes growth of lesioned adult rat sensory axons ascending in the dorsal columns of the spinal cord. Eur J Neurosci. 1999;11:3873–83.

    PubMed  CAS  Google Scholar 

  57. Ramer MS, Priestley JV, McMahon SB. Functional regeneration of sensory axons into the adult spinal cord. Nature. 2000;403:312–6.

    PubMed  CAS  Google Scholar 

  58. Endres M, Fan G, Hirt L, Jaenisch R. Stroke damage in mice after knocking the neutrophin-4 gene into the brain-derived neurotrophic factor locus. J Cereb Blood Flow Metab. 2003;23:150–3.

    PubMed  CAS  Google Scholar 

  59. Airaksinen MS, Titievsky A, Saarma M. GDNF family neurotrophic factor signaling: four masters, one servant? Mol Cell Neurosci. 1999;13:313–25.

    PubMed  CAS  Google Scholar 

  60. Kobayashi T, Ahlenius H, Thored P, Kobayashi R, Kokaia Z, Lindvall O. Intracerebral infusion of glial cell line-derived neurotrophic factor promotes striatal neurogenesis after stroke in adult rats. Stroke. 2006;37:2361–7.

    PubMed  CAS  Google Scholar 

  61. Tsai TH, Chen SL, Chiang YH, Lin SZ, Ma HI, Kuo SW, Tsao YP. Recombinant adeno-associated virus vector expressing glial cell line-derived neurotrophic factor reduces ischemia-induced damage. Exp Neurol. 2000;166:266–75.

    PubMed  CAS  Google Scholar 

  62. Hermann DM, Kilic E, Kugler S, Isenmann S, Bahr M. Adenovirus-mediated GDNF and CNTF pretreatment protects against striatal injury following transient middle cerebral artery occlusion in mice. Neurobiol Dis. 2001;8:655–66.

    PubMed  CAS  Google Scholar 

  63. Hermann DM, Kilic E, Kugler S, Isenmann S, Bahr M. Adenovirus-mediated glial cell line-derived neurotrophic factor (GDNF) expression protects against subsequent cortical cold injury in rats. Neurobiol Dis. 2001;8:964–73.

    PubMed  CAS  Google Scholar 

  64. Harvey BK, Chang CF, Chiang YH, Bowers WJ, Morales M, Hoffer BJ, Wang Y, Federoff HJ. HSV amplicon delivery of glial cell line-derived neurotrophic factor is neuroprotective against ischemic injury. Exp Neurol. 2003;183:47–55.

    PubMed  CAS  Google Scholar 

  65. Arvidsson A, Kirik D, Lundberg C, Mandel RJ, Andsberg G, Kokaia Z, Lindvall O. Elevated GDNF levels following viral vector-mediated gene transfer can increase neuronal death after stroke in rats. Neurobiol Dis. 2003;14:542–56.

    PubMed  CAS  Google Scholar 

  66. Shirakura M, Inoue M, Fujikawa S, Washizawa K, Komaba S, Maeda M, Watabe K, Yoshikawa Y, Hasegawa M. Postischemic administration of Sendai virus vector carrying neurotrophic factor genes prevents delayed neuronal death in gerbils. Gene Ther. 2004;11:784–90.

    PubMed  CAS  Google Scholar 

  67. Takeshita S, Zheng LP, Brogi E, Kearney M, Pu LQ, Bunting S, Ferrara N, Symes JF, Isner JM. Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest. 1994;93:662–70.

    PubMed  CAS  Google Scholar 

  68. Isner JM, Walsh K, Symes J, Pieczek A, Takeshita S, Lowry J, Rosenfield K, Weir L, Brogi E, Jurayj D. Arterial gene transfer for therapeutic angiogenesis in patients with peripheral artery disease. Hum Gene Ther. 1996;7:959–88.

    PubMed  CAS  Google Scholar 

  69. Yla-Herttuala S, Martin JF. Cardiovascular gene therapy. Lancet. 2000;355:213–22.

    PubMed  CAS  Google Scholar 

  70. Isner JM, Ropper A, Hirst K. VEGF gene transfer for diabetic neuropathy. Human Gene Therapy. 2001;12:1593–4.

    PubMed  CAS  Google Scholar 

  71. Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, Bruggen N, Chopp M. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest. 2000;106:829–38.

    PubMed  CAS  Google Scholar 

  72. Carmeliet P, Storkebaum E. Vascular and neuronal effects of VEGF in the nervous system: implications for neurological disorders. Semin Cell Dev Biol. 2002;13:39–53.

    PubMed  CAS  Google Scholar 

  73. Widenfalk J, Lipson A, Jubran M, Hofstetter C, Ebendal T, Cao Y, Olson L. Vascular endothelial growth factor improves functional outcome and decreases secondary degeneration in experimental spinal cord contusion injury. Neuroscience. 2003;120:951–60.

    PubMed  CAS  Google Scholar 

  74. Choi UH, Ha Y, Huang X, Park SR, Chung J, Hyun DK, Park H, Park HC, Kim SW, Lee M. Hypoxia-inducible expression of vascular endothelial growth factor for the treatment of spinal cord injury in a rat model. J Neurosurg Spine. 2007;7:54–60.

    PubMed  Google Scholar 

  75. Kumai Y, Ooboshi H, Ibayashi S, Ishikawa E, Sugimori H, Kamouchi M, Kitazono T, Egashira K, Iida M. Postischemic gene transfer of soluble Flt-1 protects against brain ischemia with marked attenuation of blood-brain barrier permeability. J Cereb Blood Flow Metab. 2007;27:1152–60.

    PubMed  CAS  Google Scholar 

  76. Springer ML, Chen AS, Kraft PE, Bednarski M, Blau HM. VEGF gene delivery to muscle: potential role for vasculogenesis in adults. Mol Cell. 1998;2:549–58.

    PubMed  CAS  Google Scholar 

  77. Lee RJ, Springer ML, Blanco-Bose WE, Shaw R, Ursell PC, Blau HM. VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation. 2000;102:898–901.

    PubMed  CAS  Google Scholar 

  78. Shen F, Su H, Fan Y, Chen Y, Zhu Y, Liu W, Young WL, Yang GY. Adeno-associated viral-vector-mediated hypoxia-inducible vascular endothelial growth factor gene expression attenuates ischemic brain injury after focal cerebral ischemia in mice. Stroke. 2006;37:2601–6.

    PubMed  CAS  Google Scholar 

  79. Su H, Arakawa-Hoyt J, Kan YW. Adeno-associated viral vector-mediated hypoxia response element-regulated gene expression in mouse ischemic heart model. Proc Natl Acad Sci USA. 2002;99:9480–5.

    PubMed  CAS  Google Scholar 

  80. Lee M, Rentz J, Bikram M, Han S, Bull DA, Kim SW. Hypoxia-inducible VEGF gene delivery to ischemic myocardium using water-soluble lipopolymer. Gene Ther. 2003;10:1535–42.

    PubMed  CAS  Google Scholar 

  81. Lee M, Bikram M, Oh S, Bull DA, Kim SW. Sp1-dependent regulation of the RTP801 promoter and its application to hypoxia-inducible VEGF plasmid for ischemic disease. Pharm Res. 2004;21:736–41.

    PubMed  CAS  Google Scholar 

  82. Yockman JW, Kastenmeier A, Erickson HM, Brumbach JG, Whitten MG, Albanil A, Li DY, Kim SW, Bull DA. Novel polymer carriers and gene constructs for treatment of myocardial ischemia and infarction. J Control Release. 2008;132:260–6.

    PubMed  CAS  Google Scholar 

  83. Kim HA, Lim S, Moon HH, Kim SW, Hwang KC, Lee M, Kim SH, Choi D. Hypoxia-inducible vascular endothelial growth factor gene therapy using the oxygen-dependent degradation domain in myocardial ischemia. Pharm Res. 2010;27:2075–84.

    PubMed  CAS  Google Scholar 

  84. Post MJ, Laham R, Sellke FW, Simons M. Therapeutic angiogenesis in cardiology using protein formulations. Cardiovasc Res. 2001;49:522–31.

    PubMed  CAS  Google Scholar 

  85. Ziche M, Donnini S, Morbidelli L. Development of new drugs in angiogenesis. Current Drug Targets. 2004;5:485–93.

    PubMed  CAS  Google Scholar 

  86. Tanaka S, Kitagawa K, Sugiura S, Matsuoka-Omura E, Sasaki T, Yagita Y, Hori M. Infiltrating macrophages as in vivo targets for intravenous gene delivery in cerebral infarction. Stroke. 2004;35:1968–73.

    PubMed  CAS  Google Scholar 

  87. Leker RR, Soldner F, Velasco I, Gavin DK, Androutsellis-Theotokis A, McKay RD. Long-lasting regeneration after ischemia in the cerebral cortex. Stroke. 2007;38:153–61.

    PubMed  Google Scholar 

  88. Johe KK, Hazel TG, Muller T, Dugich-Djordjevic MM, McKay RD. Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev. 1996;10:3129–40.

    PubMed  CAS  Google Scholar 

  89. Kirkby KA, Adin CA. Products of heme oxygenase and their potential therapeutic applications. American Journal of Physiology Renal Physiology. 2006;290:563–71.

    Google Scholar 

  90. Vachharajani TJ, Work J, Issekutz AC, Granger DN. Heme oxygenase modulates selectin expression in different regional vascular beds. Am J Physiol Heart Circ Physiol. 2000;278:H1613–1617.

    PubMed  CAS  Google Scholar 

  91. Wagener FA, Eggert A, Boerman OC, Oyen WJ, Verhofstad A, Abraham NG, Adema G, van Kooyk Y, de Witte T, Figdor CG. Heme is a potent inducer of inflammation in mice and is counteracted by heme oxygenase. Blood. 2001;98:1802–11.

    PubMed  CAS  Google Scholar 

  92. Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H, Wysk M, Davis RJ, Flavell RA, Choi AM. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med. 2000;6:422–8.

    PubMed  CAS  Google Scholar 

  93. Minamino T, Christou H, Hsieh CM, Liu Y, Dhawan V, Abraham NG, Perrella MA, Mitsialis SA, Kourembanas S. Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia. Proc Natl Acad Sci USA. 2001;98:8798–803.

    PubMed  CAS  Google Scholar 

  94. Ferris CD, Jaffrey SR, Sawa A, Takahashi M, Brady SD, Barrow RK, Tysoe SA, Wolosker H, Baranano DE, Dore S, Poss KD, Snyder SH. Haem oxygenase-1 prevents cell death by regulating cellular iron. Nature Cell Biology. 1999;1:152–7.

    PubMed  CAS  Google Scholar 

  95. Liu Y, Rabinovitch A, Suarez-Pinzon W, Muhkerjee B, Brownlee M, Edelstein D, Federoff HJ. Expression of the bcl-2 gene from a defective HSV-1 amplicon vector protects pancreatic beta-cells from apoptosis. Hum Gene Ther. 1996;7:1719–26.

    PubMed  CAS  Google Scholar 

  96. Lawrence MS, McLaughlin JR, Sun GH, Ho DY, McIntosh L, Kunis DM, Sapolsky RM, Steinberg GK. Herpes simplex viral vectors expressing Bcl-2 are neuroprotective when delivered after a stroke. J Cereb Blood Flow Metab. 1997;17:740–4.

    PubMed  CAS  Google Scholar 

  97. Amarante-Mendes GP, Naekyung Kim C, Liu L, Huang Y, Perkins CL, Green DR, Bhalla K. Bcr-Abl exerts its antiapoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome C and activation of caspase-3. Blood. 1998;91:1700–5.

    PubMed  CAS  Google Scholar 

  98. Sun Y, Jin K, Clark KR, Peel A, Mao XO, Chang Q, Simon RP, Greenberg DA. Adeno-associated virus-mediated delivery of BCL-w gene improves outcome after transient focal cerebral ischemia. Gene Ther. 2003;10:115–22.

    PubMed  CAS  Google Scholar 

  99. Yuan J, Yankner BA. Apoptosis in the nervous system. Nature. 2000;407:802–9.

    PubMed  CAS  Google Scholar 

  100. Brocheriou V, Hagege AA, Oubenaissa A, Lambert M, Mallet VO, Duriez M, Wassef M, Kahn A, Menasche P, Gilgenkrantz H. Cardiac functional improvement by a human Bcl-2 transgene in a mouse model of ischemia/reperfusion injury. J Gene Med. 2000;2:326–33.

    PubMed  CAS  Google Scholar 

  101. Contreras JL, Bilbao G, Smyth CA, Jiang XL, Eckhoff DE, Jenkins SM, Thomas FT, Curiel DT, Thomas JM. Cytoprotection of pancreatic islets before and soon after transplantation by gene transfer of the anti-apoptotic Bcl-2 gene. Transplantation. 2001;71:1015–23.

    PubMed  CAS  Google Scholar 

  102. Kirkin V, Joos S, Zornig M. The role of Bcl-2 family members in tumorigenesis. Biochim Biophys Acta. 2004;1644:229–49.

    PubMed  CAS  Google Scholar 

  103. Stein CA, Benimetskaya L, Mani S. Antisense strategies for oncogene inactivation. Semin Oncol. 2005;32:563–72.

    PubMed  CAS  Google Scholar 

  104. Al-Jamal KT, Gherardini L, Bardi G, Nunes A, Guo C, Bussy C, Herrero MA, Bianco A, Prato M, Kostarelos K, Pizzorusso T. Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing. Proc Natl Acad Sci USA. 2011;108:10952–7.

    PubMed  CAS  Google Scholar 

  105. Kim ID, Shin JH, Kim SW, Choi S, Ahn J, Han PL, Park JS, Lee JK. Intranasal delivery of HMGB1 siRNA confers target gene knockdown and robust neuroprotection in the postischemic brain. Mol Ther. 2012;20:829–39.

    PubMed  CAS  Google Scholar 

  106. Selvamani A, Sathyan P, Miranda RC, Sohrabji F. An antagomir to microRNA Let7f promotes neuroprotection in an ischemic stroke model. PLoS One. 2012;7:e32662.

    PubMed  CAS  Google Scholar 

  107. Sawant R, Torchilin V. Intracellular transduction using cell-penetrating peptides. Mol Biosyst. 2010;6:628–40.

    PubMed  CAS  Google Scholar 

  108. Doeppner TR, Nagel F, Dietz GP, Weise J, Tonges L, Schwarting S, Bahr M. TAT-Hsp70-mediated neuroprotection and increased survival of neuronal precursor cells after focal cerebral ischemia in mice. J Cereb Blood Flow Metab. 2009;29:1187–96.

    PubMed  CAS  Google Scholar 

  109. Ji HJ, Chai HY, Nahm SS, Lee J, Bae GW, Nho K, Kim YB, Kang JK. Neuroprotective effects of the novel polyethylene glycol-hemoglobin conjugate SB1 on experimental cerebral thromboembolism in rats. Eur J Pharmacol. 2007;566:83–7.

    PubMed  CAS  Google Scholar 

  110. Cooke MJ, Wang Y, Morshead CM, Shoichet MS. Controlled epi-cortical delivery of epidermal growth factor for the stimulation of endogenous neural stem cell proliferation in stroke-injured brain. Biomaterials. 2011;32:5688–97.

    PubMed  CAS  Google Scholar 

  111. Veronese FM, Caliceti P, Schiavon O, Sergi M. Polyethylene glycol-superoxide dismutase, a conjugate in search of exploitation. Adv Drug Deliv Rev. 2002;54:587–606.

    PubMed  CAS  Google Scholar 

  112. Boado RJ, Zhang Y, Pardridge WM. Humanization of anti-human insulin receptor antibody for drug targeting across the human blood-brain barrier. Biotechnol Bioeng. 2007;96:381–91.

    PubMed  CAS  Google Scholar 

  113. Boado RJ, Zhang Y, Wang Y, Pardridge WM. GDNF fusion protein for targeted-drug delivery across the human blood-brain barrier. Biotechnol Bioeng. 2008;100:387–96.

    PubMed  CAS  Google Scholar 

  114. Hui EK, Boado RJ, Pardridge WM. Tumor necrosis factor receptor-IgG fusion protein for targeted drug delivery across the human blood-brain barrier. Mol Pharm. 2009;6:1536–43.

    PubMed  CAS  Google Scholar 

  115. Chen H, Spagnoli F, Burris M, Rolland WB, Fajilan A, Dou H, Tang J, Zhang JH. Nanoerythropoietin is 10-times more effective than regular erythropoietin in neuroprotection in a neonatal rat model of hypoxia and ischemia. Stroke. 2012;43:884–7.

    PubMed  CAS  Google Scholar 

  116. Reddy MK, Labhasetwar V. Nanoparticle-mediated delivery of superoxide dismutase to the brain: an effective strategy to reduce ischemia-reperfusion injury. FASEB J. 2009;23:1384–95.

    PubMed  CAS  Google Scholar 

  117. Jin YC, Kim SW, Cheng F, Shin JH, Park JK, Lee S, Lee JE, Han PL, Lee M, Kim KK, Choi H, Lee JK. The effect of biodegradable gelatin microspheres on the neuroprotective effects of high mobility group box 1 A box in the postischemic brain. Biomaterials. 2011;32:899–908.

    PubMed  CAS  Google Scholar 

  118. Lee S, Song H, Kim HA, Oh B, Lee DY, Lee M. The box A domain of high mobility group box-1 protein as an efficient siRNA carrier with anti-inflammatory effects. J Cell Biochem. 2012;113:122–31.

    PubMed  CAS  Google Scholar 

  119. Klose D, Laprais M, Leroux V, Siepmann F, Deprez B, Bordet R, Siepmann J. Fenofibrate-loaded PLGA microparticles: effects on ischemic stroke. Eur J Pharm Sci. 2009;37:43–52.

    PubMed  CAS  Google Scholar 

  120. Bordet R, Ouk T, Petrault O, Gele P, Gautier S, Laprais M, Deplanque D, Duriez P, Staels B, Fruchart JC, Bastide M. PPAR: a new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochem Soc Trans. 2006;34:1341–6.

    PubMed  CAS  Google Scholar 

  121. Heneka MT, Landreth GE. PPARs in the brain. Biochim Biophys Acta. 2007;1771:1031–45.

    PubMed  CAS  Google Scholar 

  122. Emerich DF, Silva E, Ali O, Mooney D, Bell W, Yu SJ, Kaneko Y, Borlongan C. Injectable VEGF hydrogels produce near complete neurological and anatomical protection following cerebral ischemia in rats. Cell Transplantation. 2010;19:1063–71.

    PubMed  Google Scholar 

  123. Wang Y, Cooke MJ, Lapitsky Y, Wylie RG, Sachewsky N, Corbett D, Morshead CM, Shoichet MS. Transport of epidermal growth factor in the stroke-injured brain. J Control Release. 2011;149:225–35.

    PubMed  CAS  Google Scholar 

  124. Wang Y, Cooke MJ, Morshead CM, Shoichet MS. Hydrogel delivery of erythropoietin to the brain for endogenous stem cell stimulation after stroke injury. Biomaterials. 2012;33:2681–92.

    PubMed  CAS  Google Scholar 

  125. Chen MY, Hoffer A, Morrison PF, Hamilton JF, Hughes J, Schlageter KS, Lee J, Kelly BR, Oldfield EH. Surface properties, more than size, limiting convective distribution of virus-sized particles and viruses in the central nervous system. J Neurosurg. 2005;103:311–9.

    PubMed  Google Scholar 

  126. Monahan PE, Jooss K, Sands MS. Safety of adeno-associated virus gene therapy vectors: a current evaluation. Expert Opin Drug Saf. 2002;1:79–91.

    PubMed  CAS  Google Scholar 

  127. Lu Y. Recombinant adeno-associated virus as delivery vector for gene therapy–a review. Stem Cells and Development. 2004;13:133–45.

    PubMed  CAS  Google Scholar 

  128. Huang X, Yang Y. Innate immune recognition of viruses and viral vectors. Hum Gene Ther. 2009;20:293–301.

    PubMed  CAS  Google Scholar 

  129. Recchia A, Perani L, Sartori D, Olgiati C, Mavilio F. Site-specific integration of functional transgenes into the human genome by adeno/AAV hybrid vectors. Mol Ther. 2004;10:660–70.

    PubMed  CAS  Google Scholar 

  130. Bouard D, Alazard-Dany D, Cosset FL. Viral vectors: from virology to transgene expression. British J Pharmacol. 2009;157:153–65.

    CAS  Google Scholar 

  131. Lim ST, Airavaara M, Harvey BK. Viral vectors for neurotrophic factor delivery: a gene therapy approach for neurodegenerative diseases of the CNS. Pharmacological Research: the Official Journal of the Italian Pharmacological Society. 2010;61:14–26.

    CAS  Google Scholar 

  132. Papale A, Cerovic M, Brambilla R. Viral vector approaches to modify gene expression in the brain. J Neurosci Methods. 2009;185:1–14.

    PubMed  CAS  Google Scholar 

  133. Fisher KD, Stallwood Y, Green NK, Ulbrich K, Mautner V, Seymour LW. Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Ther. 2001;8:341–8.

    PubMed  CAS  Google Scholar 

  134. Green NK, Herbert CW, Hale SJ, Hale AB, Mautner V, Harkins R, Hermiston T, Ulbrich K, Fisher KD, Seymour LW. Extended plasma circulation time and decreased toxicity of polymer-coated adenovirus. Gene Ther. 2004;11:1256–63.

    PubMed  CAS  Google Scholar 

  135. Fisher KD, Seymour LW. HPMA copolymers for masking and retargeting of therapeutic viruses. Adv Drug Deliv Rev. 2010;62:240–5.

    PubMed  CAS  Google Scholar 

  136. Xia CF, Yin H, Yao YY, Borlongan CV, Chao L, Chao J. Kallikrein protects against ischemic stroke by inhibiting apoptosis and inflammation and promoting angiogenesis and neurogenesis. Hum Gene Ther. 2006;17:206–19.

    PubMed  CAS  Google Scholar 

  137. Zlokovic BV, Apuzzo ML. Cellular and molecular neurosurgery: pathways from concept to reality–part II: vector systems and delivery methodologies for gene therapy of the central nervous system. Neurosurgery. 1997;40:805–12. discussion 812-803.

    PubMed  CAS  Google Scholar 

  138. Badin RA, Modo M, Cheetham M, Thomas DL, Gadian DG, Latchman DS, Lythgoe MF. Protective effect of post-ischaemic viral delivery of heat shock proteins in vivo. J Cereb Blood Flow Metab. 2009;29:254–63.

    PubMed  CAS  Google Scholar 

  139. Zhu J, Huang X, Yang Y. Innate immune response to adenoviral vectors is mediated by both Toll-like receptor-dependent and -independent pathways. J Virol. 2007;81:3170–80.

    PubMed  CAS  Google Scholar 

  140. Naldini L, Blomer U, Gage FH, Trono D, Verma IM. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA. 1996;93:11382–8.

    PubMed  CAS  Google Scholar 

  141. Blomer U, Naldini L, Kafri T, Trono D, Verma IM, Gage FH. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol. 1997;71:6641–9.

    PubMed  CAS  Google Scholar 

  142. Hu Q, Chen C, Khatibi NH, Li L, Yang L, Wang K, Han J, Duan W, Zhang JH, Zhou C. Lentivirus-mediated transfer of MMP-9 shRNA provides neuroprotection following focal ischemic brain injury in rats. Brain Res. 2011;1367:347–59.

    PubMed  CAS  Google Scholar 

  143. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, Marion P, Salazar F, Kay MA. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 2006;441:537–41.

    PubMed  CAS  Google Scholar 

  144. Giering JC, Grimm D, Storm TA, Kay MA. Expression of shRNA from a tissue-specific pol II promoter is an effective and safe RNAi therapeutic. Mol Ther. 2008;16:1630–6.

    PubMed  CAS  Google Scholar 

  145. Gao F, He T, Wang H, Yu S, Yi D, Liu W, Cai Z. A promising strategy for the treatment of ischemic heart disease: Mesenchymal stem cell-mediated vascular endothelial growth factor gene transfer in rats. Can J Cardiol. 2007;23:891–8.

    PubMed  Google Scholar 

  146. Liu H, Honmou O, Harada K, Nakamura K, Houkin K, Hamada H, Kocsis JD. Neuroprotection by PlGF gene-modified human mesenchymal stem cells after cerebral ischaemia. Brain. 2006;129:2734–45.

    PubMed  CAS  Google Scholar 

  147. Kang HC, Lee M, Bae YH. Polymeric gene carriers. Crit Rev Eukaryot Gene Expr. 2005;15:317–42.

    PubMed  CAS  Google Scholar 

  148. Hyun H, Lee J, Hwang do W, Kim S, Hyun DK, Choi JS, Lee JK, Lee M. Combinational therapy of ischemic brain stroke by delivery of heme oxygenase-1 gene and dexamethasone. Biomaterials. 2011;32:306–15.

    PubMed  CAS  Google Scholar 

  149. Tuor UI, Simone CS, Barks JD, Post M. Dexamethasone prevents cerebral infarction without affecting cerebral blood flow in neonatal rats. Stroke. 1993;24:452–7.

    PubMed  CAS  Google Scholar 

  150. Liu CC, Chien CH, Lin MT. Glucocorticoids reduce interleukin-1 concentration and result in neuroprotective effects in rat heatstroke. J Physiol. 2000;527(Pt 2):333–43.

    PubMed  CAS  Google Scholar 

  151. Bae YM, Choi H, Lee S, Kang SH, Nam K, Kim YT, Park JS, Lee M, Choi JS. Dexamethasone-conjugated low molecular weight polyethylenimine as a nucleus targeting lipopolymer gene carrier. Bioconjug Chem. 2007;18:2029–36.

    CAS  Google Scholar 

  152. Oh YK, Suh D, Kim JM, Choi HG, Shin K, Ko JJ. Polyethylenimine-mediated cellular uptake, nucleus trafficking and expression of cytokine plasmid DNA. Gene Ther. 2002;9:1627–32.

    PubMed  CAS  Google Scholar 

  153. Lee J, Hyun H, Kim J, Ryu JH, Kim HA, Park JH, Lee M. Dexamethasone-loaded peptide micelles for delivery of the heme oxygenase-1 gene to ischemic brain. J Control Release. 2012;158:131–8.

    PubMed  CAS  Google Scholar 

  154. Zhao H, Bao XJ, Wang RZ, Li GL, Gao J, Ma SH, Wei JJ, Feng M, Zhao YJ, Ma WB, Yang Y, Li YN, Kong YG. Postacute ischemia vascular endothelial growth factor transfer by transferrin-targeted liposomes attenuates ischemic brain injury after experimental stroke in rats. Hum Gene Ther. 2011;22:207–15.

    PubMed  CAS  Google Scholar 

  155. Fischer D, Bieber T, Li Y, Elsasser HP, Kissel T. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res. 1999;16:1273–9.

    PubMed  CAS  Google Scholar 

  156. Kim ID, Lim CM, Kim JB, Nam HY, Nam K, Kim SW, Park JS, Lee JK. Neuroprotection by biodegradable PAMAM ester (e-PAM-R)-mediated HMGB1 siRNA delivery in primary cortical cultures and in the postischemic brain. J Control Release. 2010;142:422–30.

    PubMed  CAS  Google Scholar 

  157. Hyun H, Won YW, Kim KM, Lee J, Lee M, Kim YH. Therapeutic effects of a reducible poly (oligo-D-arginine) carrier with the heme oxygenase-1 gene in the treatment of hypoxic-ischemic brain injury. Biomaterials. 2010;31:9128–34.

    PubMed  CAS  Google Scholar 

  158. Kim JB, Choi JS, Nam K, Lee M, Park JS, Lee JK. Enhanced transfection of primary cortical cultures using arginine-grafted PAMAM dendrimer, PAMAM-Arg. J Control Release. 2006;114:110–7.

    PubMed  CAS  Google Scholar 

  159. Lo EH, Singhal AB, Torchilin VP, Abbott NJ. Drug delivery to damaged brain. Brain Res Rev. 2001;38:140–8.

    PubMed  CAS  Google Scholar 

  160. Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2011;64:614–28.

    Google Scholar 

  161. Bahadur S, Pathak K. Physicochemical and physiological considerations for efficient nose-to-brain targeting. Expert Opinion on Drug Delivery. 2012;9:19–31.

    PubMed  CAS  Google Scholar 

  162. Draghia R, Caillaud C, Manicom R, Pavirani A, Kahn A, Poenaru L. Gene delivery into the central nervous system by nasal instillation in rats. Gene Ther. 1995;2:418–23.

    PubMed  CAS  Google Scholar 

  163. Zhang Y, Pardridge WM. Neuroprotection in transient focal brain ischemia after delayed intravenous administration of brain-derived neurotrophic factor conjugated to a blood-brain barrier drug targeting system. Stroke. 2001;32:1378–84.

    PubMed  CAS  Google Scholar 

  164. Song BW, Vinters HV, Wu D, Pardridge WM. Enhanced neuroprotective effects of basic fibroblast growth factor in regional brain ischemia after conjugation to a blood-brain barrier delivery vector. J Pharmacol Exp Ther. 2002;301:605–10.

    PubMed  CAS  Google Scholar 

  165. Pardridge WM. Blood-brain barrier drug targeting enables neuroprotection in brain ischemia following delayed intravenous administration of neurotrophins. Adv Exp Med Biol. 2002;513:397–430.

    PubMed  CAS  Google Scholar 

  166. Kumar P, Wu H, McBride JL, Jung KE, Kim MH, Davidson BL, Lee SK, Shankar P, Manjunath N. Transvascular delivery of small interfering RNA to the central nervous system. Nature. 2007;448:39–43.

    PubMed  CAS  Google Scholar 

  167. Kilic E, Dietz GP, Hermann DM, Bahr M. Intravenous TAT-Bcl-Xl is protective after middle cerebral artery occlusion in mice. Ann Neurol. 2002;52:617–22.

    PubMed  CAS  Google Scholar 

  168. Kilic U, Kilic E, Dietz GP, Bahr M. Intravenous TAT-GDNF is protective after focal cerebral ischemia in mice. Stroke. 2003;34:1304–10.

    PubMed  Google Scholar 

  169. Zderic V. Ultrasound-enhanced drug and gene delivery: a review. Conf Proc IEEE Eng Med Biol Soc 2008. 2008;4472.

  170. Ting CY, Fan CH, Liu HL, Huang CY, Hsieh HY, Yen TC, Wei KC, Yeh CK. Concurrent blood-brain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment. Biomaterials. 2012;33:704–12.

    PubMed  CAS  Google Scholar 

  171. Etame AB, Diaz RJ, O’Reilly MA, Smith CA, Mainprize TG, Hynynen K, Rutka JT. Enhanced delivery of gold nanoparticles with therapeutic potential into the brain using MRI-guided focused ultrasound. Nanomedicine: Nanotechnology, Biology, and Medicine (2012).

  172. Konofagou EE, Tung YS, Choi J, Deffieux T, Baseri B, Vlachos F. Ultrasound-induced blood-brain barrier opening. Curr Pharm Biotechnol. 2012.

  173. Zhangand Y, Pardridge WM. Conjugation of brain-derived neurotrophic factor to a blood-brain barrier drug targeting system enables neuroprotection in regional brain ischemia following intravenous injection of the neurotrophin. Brain Res. 2001;889:49–56.

    Google Scholar 

  174. Malin SA, Molliver DC, Koerber HR, Cornuet P, Frye R, Albers KM, Davis BM. Glial cell line-derived neurotrophic factor family members sensitize nociceptors in vitro and produce thermal hyperalgesia in vivo. J Neurosci. 2006;26:8588–99.

    PubMed  CAS  Google Scholar 

  175. Sawada N, Liao JK. Targeting eNOS and beyond: emerging heterogeneity of the role of endothelial Rho proteins in stroke protection. Expert Rev Neurother. 2009;9:1171–86.

    PubMed  CAS  Google Scholar 

  176. Milbrandt J, de Sauvage FJ, Fahrner TJ, Baloh RH, Leitner ML, Tansey MG, Lampe PA, Heuckeroth RO, Kotzbauer PT, Simburger KS, Golden JP, Davies JA, Vejsada R, Kato AC, Hynes M, Sherman D, Nishimura M, Wang LC, Vandlen R, Moffat B, Klein RD, Poulsen K, Gray C, Garces A, Johnson Jr EM, et al. Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron. 1998;20:245–53.

    PubMed  CAS  Google Scholar 

  177. Xia CF, Yin H, Borlongan CV, Chao L, Chao J. Kallikrein gene transfer protects against ischemic stroke by promoting glial cell migration and inhibiting apoptosis. Hypertension. 2004;43:452–9.

    PubMed  CAS  Google Scholar 

  178. Zhang JJ, Chao L, Chao J. Adenovirus-mediated kallikrein gene delivery reduces aortic thickening and stroke-induced death rate in Dahl salt-sensitive rats. Stroke. 1999;30:1925–31. discussion 1931-1922.

    PubMed  CAS  Google Scholar 

  179. Lu H, Wang Y, Yuan F, Liu J, Zeng L, Yang GY. Overexpression of netrin-1 improves neurological outcomes in mice following transient middle cerebral artery occlusion. Front Med. 2011;5:86–93.

    PubMed  Google Scholar 

  180. Airavaara M, Chiocco MJ, Howard DB, Zuchowski KL, Peranen J, Liu C, Fang S, Hoffer BJ, Wang Y, Harvey BK. Widespread cortical expression of MANF by AAV serotype 7: localization and protection against ischemic brain injury. Exp Neurol. 2010;225:104–13.

    PubMed  CAS  Google Scholar 

  181. Davis AS, Zhao H, Sun GH, Sapolsky RM, Steinberg GK. Gene therapy using SOD1 protects striatal neurons from experimental stroke. Neurosci Lett. 2007;411:32–6.

    PubMed  CAS  Google Scholar 

  182. Fan Y, Zhu W, Yang M, Zhu Y, Shen F, Hao Q, Young WL, Yang GY, Chen Y. Del-1 gene transfer induces cerebral angiogenesis in mice. Brain Res. 2008;1219:1–7.

    PubMed  CAS  Google Scholar 

  183. Xia CF, Yin H, Borlongan CV, Chao J, Chao L. Adrenomedullin gene delivery protects against cerebral ischemic injury by promoting astrocyte migration and survival. Hum Gene Ther. 2004;15:1243–54.

    PubMed  CAS  Google Scholar 

  184. Magnoni S, Baker A, Thomson S, Jordan G, George SJ, McColl BW, McCulloch J, Horsburgh K. Neuroprotective effect of adenoviral-mediated gene transfer of TIMP-1 and -2 in ischemic brain injury. Gene Ther. 2007;14:621–5.

    PubMed  CAS  Google Scholar 

  185. Harvey BK, Airavaara M, Hinzman J, Wires EM, Chiocco MJ, Howard DB, Shen H, Gerhardt G, Hoffer BJ, Wang Y. Targeted over-expression of glutamate transporter 1 (GLT-1) reduces ischemic brain injury in a rat model of stroke. PLoS One. 2011;6:e22135.

    PubMed  CAS  Google Scholar 

  186. Yoo J, Seo JJ, Eom JH, Hwang DY. Effects of stromal cell-derived factor 1alpha delivered at different phases of transient focal ischemia in rats. Neuroscience. 2012;209:171–86.

    PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology in Korea (2012K001394, 20120006988, and 2012-012042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minhyung Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rhim, T., Lee, D.Y. & Lee, M. Drug Delivery Systems for the Treatment of Ischemic Stroke. Pharm Res 30, 2429–2444 (2013). https://doi.org/10.1007/s11095-012-0959-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0959-2

KEY WORDS

Navigation