Skip to main content
Log in

An In Vitro Methodology for Forecasting Luminal Concentrations and Precipitation of Highly Permeable Lipophilic Weak Bases in the Fasted Upper Small Intestine

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop an in vitro methodology for prediction of concentrations and potential precipitation of highly permeable, lipophilic weak bases in fasted upper small intestine based on ketoconazole and dipyridamole luminal data. Evaluate usefulness of methodology in predicting luminal precipitation of AZD0865 and SB705498 based on plasma data.

Methods

A three-compartment in vitro setup was used. Depending on the dosage form administered in in vivo studies, a solution or a suspension was placed in the gastric compartment. A medium simulating the luminal environment (FaSSIF-V2plus) was initially placed in the duodenal compartment. Concentrated FaSSIF-V2plus was placed in the reservoir compartment.

Results

In vitro ketoconazole and dipyridamole concentrations and precipitated fractions adequately reflected luminal data. Unlike luminal precipitates, in vitro ketoconazole precipitates were crystalline. In vitro AZD0865 data confirmed previously published human pharmacokinetic data suggesting that absorption rates are not affected by luminal precipitation. In vitro SB705498 data predicted that significant luminal precipitation occurs after a 100 mg or 400 mg but not after a 10 mg dose, consistent with human pharmacokinetic data.

Conclusions

An in vitro methodology for predicting concentrations and potential precipitation in fasted upper small intestine, after administration of highly permeable, lipophilic weak bases in fasted upper small intestine was developed and evaluated for its predictability in regard to luminal precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Paulekuhn GS, Dressman JB, Saal C. Trends in active pharmaceutical ingredient salt selection based on analysis of the orange book database. J Med Chem. 2007;50(26):6665–72.

    Article  PubMed  CAS  Google Scholar 

  2. Walravens J, Brouwers J, Spriet I, Tack J, Annaert P, Augustijns P. Effect of pH and comedication on gastrointestinal absorption of posaconazole: monitoring of intraluminal and plasma drug concentrations. Clin Pharmacokinet. 2011;50(11):725–34.

    Article  PubMed  CAS  Google Scholar 

  3. Box K, Comer JE, Gravestock T, Stuart M. New ideas about the solubility of drugs. Chem Biodivers. 2009;6(11):1767–88.

    Article  PubMed  CAS  Google Scholar 

  4. Bevernage J, Brouwers J, Clarysse S, Vertzoni M, Tack J, Annaert P, et al. Drug supersaturation in simulated and human intestinal fluids representing different nutritional states. J Pharm Sci. 2010;99(11):4525–34.

    Article  PubMed  CAS  Google Scholar 

  5. Psachoulias D, Vertzoni M, Goumas K, Kalioras V, Beato S, Butler J, et al. Precipitation in and supersaturation of contents of the upper small intestine after administration of two weak bases to fasted adults. Pharm Res. 2011;28(12):3145–58.

    Article  PubMed  CAS  Google Scholar 

  6. Sugano K. Computational oral absorption simulation of free base drugs. Int J Pharm. 2010;398(1–2):73–82.

    Article  PubMed  CAS  Google Scholar 

  7. Shono Y, Jantratid E, Dressman JB. Precipitation in the small intestine may play a more important role in the in vivo performance of poorly soluble weak bases in the fasted state: case example nelfinavir. Eur J Pharm Biopharm. 2011;79(2):349–56.

    Article  PubMed  CAS  Google Scholar 

  8. Carlert S, Pålsson A, Hanisch G, von Corswant C, Nilsson C, Lindfors L, et al. Predicting intestinal precipitation-a case example for a basic BCS class II drug. Pharm Res. 2010;27(10):2119–30.

    Article  PubMed  CAS  Google Scholar 

  9. Kobayashi M, Sada N, Sugawara M, Iseki K, Miyazaki K. Development of a new system for prediction of drug absorption that takes into account drug dissolution and pH change in the gastro-intestinal tract. Int J Pharm. 2001;221(1–2):87–94.

    Article  PubMed  CAS  Google Scholar 

  10. Kostewicz ES, Wunderlich M, Brauns U, Becker R, Bock T, Dressman JB. Predicting the precipitation of poorly soluble weak bases upon entry in the small intestine. J Pharm Pharmacol. 2004;56(1):43–51.

    Article  PubMed  CAS  Google Scholar 

  11. Gu CH, Rao D, Gandhi RB, Hilden J, Raghavan K. Using a novel multicompartment dissolution system to predict the effect of gastric pH on the oral absorption of weak bases with poor intrinsic solubility. J Pharm Sci. 2005;94(1):199–208.

    Article  PubMed  CAS  Google Scholar 

  12. Bhattachar SN, Perkins EJ, Tan JS, Burns LJ. Effect of gastric pH on the pharmacokinetics of a BCS class II compound in dogs: utilization of an artificial stomach and duodenum dissolution model and Gastroplus™ simulations to predict absorption. J Pharm Sci. 2011;100(11):4756–65.

    Article  PubMed  CAS  Google Scholar 

  13. Chizh BA, O’Donnell MB, Napolitano A, Wang J, Brooke AC, Aylott MC, et al. The effects of the TRPV1 antagonist SB-705498 on TRPV1 receptor-mediated activity and inflammatory hyperalgesia in humans. Pain. 2007;132(1–2):132–41.

    Article  PubMed  CAS  Google Scholar 

  14. Jantratid E, Janssen N, Reppas C, Dressman JB. Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm Res. 2008;25(7):1663–76.

    Article  PubMed  CAS  Google Scholar 

  15. Kelly K, O’Mahony B, Lindsay B, Jones T, Grattan TJ, Rostami-Hodjegan A, et al. Comparison of the rates of disintegration, gastric emptying, and drug absorption following administration of a new and a conventional paracetamol formulation, using gamma scintigraphy. Pharm Res. 2003;20(10):1668–73.

    Article  PubMed  CAS  Google Scholar 

  16. Oberle RL, Chen TS, Lloyd C, Barnett JL, Owyang C, Meyer J, et al. The influence of the interdigestive migrating myoelectric complex on the gastric emptying of liquids. Gastroenterology. 1990;99(5):1275–82.

    PubMed  CAS  Google Scholar 

  17. Kalantzi L, Persson E, Polentarutti B, Abrahamsson B, Goumas K, Dressman JB, et al. Canine intestinal contents vs. simulated media for the assessment of solubility of two weak bases in the human small intestinal contents. Pharm Res. 2006;23(6):1373–81.

    Article  PubMed  CAS  Google Scholar 

  18. Vertzoni M, Pastelli E, Psachoulias D, Kalantzi L, Reppas C. Estimation of intragastric solubility of drugs: in what medium? Pharm Res. 2007;24(5):909–17.

    Article  PubMed  CAS  Google Scholar 

  19. Schiller C, Fröhlich CP, Giessmann T, Siegmund W, Mönnikes H, Hosten N, et al. Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging. Aliment Pharmacol Ther. 2005;22(10):971–9.

    Article  PubMed  CAS  Google Scholar 

  20. Huang YC, Colaizzi JL, Bierman RH, Woestenborghs R, Heykants J. Pharmacokinetics and dose proportionality of ketoconazole in normal volunteers. Antimicrob Agents Chemother. 1986;30(2):206–10.

    Article  PubMed  CAS  Google Scholar 

  21. Endrenyi L, Fritsch S, Yan W. Cmax/AUC is a clearer measure than Cmax for absorption rates in investigations of bioequivalence. Int J Clin Pharmacol Ther Toxicol. 1991;29(10):394–9.

    PubMed  CAS  Google Scholar 

  22. Lacey LF, Keene ON, Duquesnoy C, Bye A. Evaluation of different indirect measures of rate of drug absorption in comparative pharmacokinetic studies. J Pharm Sci. 1994;83(2):212–5.

    Article  PubMed  CAS  Google Scholar 

  23. Chen M-L. An alternative approach for assessment of rate of absorption in bioequivalence studies. Pharm Res. 1992;9(11):1380–5.

    Article  PubMed  CAS  Google Scholar 

  24. Macheras P, Symillides M, Reppas C. The cutoff time point of the partial area method for assessment of rate of absorption in bioequivalence studies. Pharm Res. 1994;11(6):831–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments And Disclosures

Authors would like to thank B. Abrahamsson (Pharmaceutical Development, AstraZeneca R&D, Mölndal, Sweden) for providing the AZD0865 material and valuable comments, N. Koumandrakis and M. Dimopoulou (Department of Pharmaceutical Technology, National and Kapodistrian University of Athens, Athens, Greece) for their assistance in the evaluation of FaSSIF-V2plus, and S. Beato (Phad oral dosage forms 1, Novartis Pharma AG, Basel, Switzerland) for valuable comments during the design of the in vitro experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Reppas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Psachoulias, D., Vertzoni, M., Butler, J. et al. An In Vitro Methodology for Forecasting Luminal Concentrations and Precipitation of Highly Permeable Lipophilic Weak Bases in the Fasted Upper Small Intestine. Pharm Res 29, 3486–3498 (2012). https://doi.org/10.1007/s11095-012-0844-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0844-z

KEY WORDS

Navigation