Skip to main content
Log in

Analysis of a Nanocrystalline Polymer Dispersion of Ebselen Using Solid-State NMR, Raman Microscopy, and Powder X-ray Diffraction

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Nanocrystalline drug-polymer dispersions are of significant interest in pharmaceutical delivery. The purpose of this work is to demonstrate the applicability of methods based on two-dimensional (2D) and multinuclear solid-state NMR (SSNMR) to a novel nanocrystalline pharmaceutical dispersion of ebselen with polyvinylpyrrolidone-vinyl acetate (PVP-VA), after initial characterization with other techniques.

Methods

A nanocrystalline dispersion of ebselen with PVP-VA was prepared and characterized by powder X-ray diffraction (PXRD), confocal Raman microscopy and mapping, and differential scanning calorimetry (DSC), and then subjected to detailed 1D and 2D SSNMR analysis involving 1H, 13C, and 77Se isotopes and 1H spin diffusion.

Results

PXRD was used to show that dispersion contains nanocrystalline ebselen in the 35–60 nm size range. Confocal Raman microscopy and spectral mapping were able to detect regions where short-range interactions may occur between ebselen and PVP-VA. Spin diffusion effects were analyzed using 2D SSNMR experiments and are able to directly detect interactions between ebselen and the surrounding PVP-VA.

Conclusions

The methods used here, particularly the 2D SSNMR methods based on spin diffusion, provided detailed structural information about a nanocrystalline polymer dispersion of ebselen, and should be useful in other studies of these types of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. Janssens S, Van den Mooter G. Physical chemistry of solid dispersions. J Pharm Pharmacol. 2009;61:1571–86.

    Article  PubMed  CAS  Google Scholar 

  2. Friesen DT, Shanker R, Crew M, Smithey DT, Curatolo WJ, Nightingale JAS. Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol Pharm. 2008;5:1003–19.

    Article  PubMed  CAS  Google Scholar 

  3. Buttini F, Colombo P, Wenger MPE, Mesquida P, Marriott C, Jones SA. Back to basics: the development of a simple, homogenous, two-component dry-powder inhaler formulation for the delivery of budesonide using miscible vinyl polymers. J Pharm Sci. 2008;97:1257–67.

    Article  PubMed  CAS  Google Scholar 

  4. Traynor MJ, Zhao Y, Brown MB, Jones SA. Vinyl polymer-coated lorazepam particles for drug delivery to the airways. Int J Pharm. 2011;410:9–16.

    Article  PubMed  CAS  Google Scholar 

  5. Qian F, Tao J, Desikan S, Hussain M, Smith RL. Mechanistic investigation of Pluronic-based nano-crystalline drug-polymer solid dispersions. Pharm Res. 2007;24:1551–60.

    Article  PubMed  CAS  Google Scholar 

  6. Raghavan SL, Trividic A, Davis AF, Hadgraft J. Crystallization of hydrocortisone acetate: influence of polymers. Int J Pharm. 2001;212:213–21.

    Article  PubMed  CAS  Google Scholar 

  7. Laaksonen T, Liu P, Rahikkala A, Peltonen L, Kauppinen EI, Hirvonen J, et al. Intact nanoparticulate indomethacin in fast-dissolving carrier particles by combined wet milling and aerosol flow reactor methods. Pharm Res. 2011;28:2403–11.

    Article  PubMed  CAS  Google Scholar 

  8. Pham TN, Watson SA, Edwards AJ, Chavda M, Clawson JS, Strohmeier M, et al. Analysis of amorphous solid dispersions using 2D solid-state NMR and 1H T1 relaxation measurements. Mol Pharm. 2010;7:1667–91.

    Article  CAS  Google Scholar 

  9. Patel JR, Carlton RA, Yuniatine F, Needham TE, Wu L, Vogt FG. Preparation and structural characterization of amorphous spray-dried dispersions of tenoxicam with enhanced dissolution. J Pharm Sci. 2011;101:641–63.

    Article  PubMed  Google Scholar 

  10. Qian F, Huang J, Zhu Q, Haddadin R, Gawel J, Garmise R, et al. Is a distinctive single Tg a reliable indicator for the homogeneity of amorphous solid dispersion? Int J Pharm. 2010;395:232–5.

    Article  PubMed  CAS  Google Scholar 

  11. Ernst RR, Bodenhausen G, Wokaun A. Principles of nuclear magnetic resonance in one and two dimensions. New York: Oxford University Press; 1987. p. 535–8.

    Google Scholar 

  12. Caravatti P, Deli JA, Bodenhausen G, Ernst RR. Direct evidence of microscopic homogeneity in disordered solids. J Am Chem Soc. 1982;104:5506–7.

    Article  CAS  Google Scholar 

  13. Meier BH. Polarization transfer and spin diffusion in solid-state NMR. Adv Magn Opt Reson. 1994;18:1–116.

    CAS  Google Scholar 

  14. Cheung TTP. Spin diffusion in solids. In: Harris RK, Grant DM, editors. The encyclopedia of NMR. New York: Wiley; 1996. p. 4518–24.

    Google Scholar 

  15. Schmidt-Rohr K, Spiess HW. Multidimensional solid-state NMR and polymers. London: Academic; 1994.

    Google Scholar 

  16. Brown S. Applications of high-resolution 1H solid-state NMR. Solid State Nucl Magn Reson. 2012;41:1–27.

    Article  PubMed  CAS  Google Scholar 

  17. Harris RK, Hodgkinson P, Zorin V, Dumez JN, Elena-Herrmann B, Emsley L, et al. Computation and NMR crystallography of terbutaline sulfate. Magn Reson Chem. 2010;48:S103–12.

    Article  PubMed  CAS  Google Scholar 

  18. Pickard CJ, Salager E, Pintacuda G, Elena B, Emsley L. Resolving structures from powders by NMR crystallography using combined proton spin diffusion and plane wave DFT calculations. J Am Chem Soc. 2007;129:8932–3.

    Article  PubMed  CAS  Google Scholar 

  19. Sakellariou D, Lesage A, Emsley L. Proton-Proton Constraints in Powdered Solids from 1H-1H-1H and 1H-1H-13C Three-Dimensional NMR Chemical Shift Correlation Spectroscopy. J Am Chem Soc. 2001;123:5604–5.

    Article  PubMed  CAS  Google Scholar 

  20. Hu WG, Schmidt-Rohr K. Characterization of ultradrawn polyethylene fibers by NMR: crystallinity, domain sizes and a highly mobile second amorphous phase. Polymer. 2000;41:2979–87.

    Article  CAS  Google Scholar 

  21. Raitza M, Wegmann J, Bachmann S, Albert K. Investigating the surface morphology of triacontyl phases with spin-diffusion solid-state NMR spectroscopy. Angew Chem Int Ed. 2000;39:3486–9.

    Article  CAS  Google Scholar 

  22. Parnham M, Sies H. Ebselen: prospective therapy for cerebral ischaemia. Exp Opin Invest Drugs. 2000;9:607–19.

    Article  CAS  Google Scholar 

  23. Nagase Y, Suzuki N, Yamauchi H, Kim S, Wada K, Arima H, et al. Inclusion complexation of a seleno-organic antioxidant, ebselen, with cyclodextrins in aqueous solution. J Incl Phenom Macro Chem. 2002;44:107–10.

    Article  CAS  Google Scholar 

  24. Breitenback J, Schrof W, Neumann J. Confocal Raman spectroscopy: analytical approach to solid dispersions and mapping of drugs. Pharm Res. 1999;16:1109–13.

    Article  Google Scholar 

  25. Pawley GS. Unit-cell refinement from powder diffraction scans. J Appl Cryst. 1981;14:357–61.

    Article  CAS  Google Scholar 

  26. Dupont PL, Dideberg O, Jacquemin P. Structures de l’ebselen (phenyl-2 2H-benzisoselenazole-l,2 one-3) (I) et de l’acetonylse1eno-2 benzanilide (II). Acta Cryst. 1990;C46:484–6.

    CAS  Google Scholar 

  27. Le Bail A. Whole powder pattern decomposition methods and applications - A retrospection. Powder Diffract. 2005;20:316–26.

    Article  Google Scholar 

  28. Metz G, Wu X, Smith SO. Ramped-amplitude cross-polarization in magic-angle spinning NMR. J Magn Reson A. 1994;110:219–27.

    Article  CAS  Google Scholar 

  29. Antzutkin ON. Sideband manipulation in magic-angle spinning NMR. Prog NMR Spectros. 1999;35:203–66.

    Article  CAS  Google Scholar 

  30. Fung BM, Khitrin AK, Ermolaev K. An improved broadband decoupling sequence for liquid crystals and powders. J Magn Reson. 2000;142:97–101.

    Article  PubMed  CAS  Google Scholar 

  31. Opella SJ, Frey MH. Selection of non-protonated carbon resonances in solid-state NMR. J Am Chem Soc. 1979;101:5854–6.

    Article  CAS  Google Scholar 

  32. Earl WL, Vanderhart DL. Measurement of 13 chemical shifts in solids. J Magn Reson. 1982;48:35–54.

    Article  CAS  Google Scholar 

  33. Demko BA, Wasylishen RE. Solid-state selenium-77 NMR. Prog NMR Spectros. 2009;54:208–38.

    Article  CAS  Google Scholar 

  34. Lesage A, Sakellariou D, Hediger S, Elena B, Charmont P, Steuernagel S, et al. Experimental aspects of proton NMR spectroscopy in solids using phase-modulated homonuclear dipolar decoupling. J Magn Reson. 2003;163:105–13.

    Article  PubMed  CAS  Google Scholar 

  35. van Rossum BJ, Förster H, de Groot HJM. High-field and high-speed CP-MAS 13C NMR heteronuclear dipolar-correlation spectroscopy of solids with frequency-switched Lee-Goldburg homonuclear decoupling. J Magn Reson. 1997;124:516–9.

    Article  Google Scholar 

  36. Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys. 1990;92:508–17.

    Article  CAS  Google Scholar 

  37. Delley B. From molecules to solids with the DMol3 approach. J Chem Phys. 2000;113:7756–64.

    Article  CAS  Google Scholar 

  38. Boese AD, Handy NC. A new parametrization of exchange-correlation generalized gradient approximation functionals. J Chem Phys. 2001;114:5497–503.

    Article  CAS  Google Scholar 

  39. Flurchick KM. DFT functionals and molecular geometries. Chem Phys Lett. 2006;421:540–3.

    Article  CAS  Google Scholar 

  40. Gaussian 09, Revision B.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, et al. Gaussian, Inc., Wallingford CT. 2010.

  41. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648–52.

    Article  CAS  Google Scholar 

  42. Koch W, Holthausen MC. A chemist’s guide to density functional theory. Weinheim: Wiley-VCH; 2001.

    Book  Google Scholar 

  43. Nakanishi W, Hayashi S, Katsura Y, Hada M. Relativistic effect on 77Se NMR chemical shifts of various selenium species in the framework of zeroth-order regular approximation. J Phys Chem A. 2011;115:8721–30.

    Article  PubMed  CAS  Google Scholar 

  44. Jameson CJ, de Dios AC. Theoretical and physical aspects of nuclear shielding. Nuc Magn Reson. 2007;36:50–71.

    Article  CAS  Google Scholar 

  45. McCusker LB, von Dreele RB, Cox DE, Louër D, Scardi P. Rietveld refinement guidelines. J Appl Cryst. 1999;32:36–50.

    Article  CAS  Google Scholar 

  46. Allen FH, Motherwell WDS. Applications of the Cambridge Structural Database in organic chemistry and crystal chemistry. Acta Cryst. 2002;B58:407–22.

    CAS  Google Scholar 

  47. Langford JI, Wilson AJC. Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Cryst. 1978;11:102–13.

    Article  CAS  Google Scholar 

  48. Bergese P, Colombo I, Gervasoni D, Depero LE. Melting of nanostructured drugs embedded into a polymeric matrix. J Phys Chem B. 2004;108:15488–93.

    Article  CAS  Google Scholar 

  49. Liu X, Yang P, Jiang Q. Size effect on melting temperature of nanostructured drugs. Mater Chem Phys. 2007;103:1–4.

    Article  Google Scholar 

  50. Gouadec G, Columban P. Raman spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties. Prog Cryst Growth Charact Mater. 2007;53:1–56.

    Article  CAS  Google Scholar 

  51. Kalinowski HO, Berger S, Braun S. Carbon-13 NMR spectroscopy. New York: Wiley; 1987.

    Google Scholar 

  52. VanderHart DL. Magnetic susceptibility and high resolution NMR of liquids and solids. In: Harris RK, Grant DM, editors. The encyclopedia of NMR. New York: Wiley; 1996. p. 2938–46.

    Google Scholar 

  53. Robbins AJ, Ng WTK, Jochym D, Keal TW, Clark SJ, Tozer DJ, et al. Combining insights from solid-state NMR and first principles calculation: applications to the 19F NMR of octafluoronaphthalene. Phys Chem Chem Phys. 2007;9:2389–96.

    Article  PubMed  CAS  Google Scholar 

  54. Barich DH, Davis JM, Schieber LJ, Zell MT, Munson EJ. Investigation of solid-state NMR line widths of ibuprofen in drug formulations. J Pharm Sci. 2006;95:1586–94.

    Article  PubMed  CAS  Google Scholar 

  55. Wiles JA, Phadke AS, Bradbury BJ, Pucci MJ, Thanassi JA, Deshpande M. Selenophene-containing inhibitors of Type IIA bacterial topoisomerases. J Med Chem. 2011;54:3418–25.

    Article  PubMed  CAS  Google Scholar 

  56. Potrzebowski MJ, Katarzynski R, Ciesielski W. Selenium-77 and carbon-13 high-resolution solid-state studies NMR of selenomethionine. Mag Reson Chem. 1999;37:173–81.

    Article  CAS  Google Scholar 

  57. Sarma BK, Mugesh G. Antioxidant activity of the anti-inflammatory compound ebselen: A reversible cyclization pathway via selenenic and seleninic acid intermediates. Chem Eur J. 2008;14:10603–14.

    Article  PubMed  CAS  Google Scholar 

  58. Orendt AM, Facelli JC. Solid state effects on NMR chemical shifts. Ann Rep NMR Spectros. 2007;62:115–78.

    Article  CAS  Google Scholar 

  59. Harris RK, Hodgkinson P, Pickard CJ, Yates JR, Zorin V. Chemical shift computations on a crystallographic basis: some reflections and comments. Magn Reson Chem. 2007;45:S174–86.

    Article  CAS  Google Scholar 

  60. Gottlieb HE, Kotlyar V, Nudelman A. NMR chemical shifts of common laboratory solvents as trace impurities. J Org Chem. 1997;62:7512–5.

    Article  PubMed  CAS  Google Scholar 

  61. Io T, Fukami T, Yamamoto K, Suzuki T, Xu J, Tomono K, et al. Homogeneous nanoparticles to enhance the efficiency of a hydrophobic drug, antihyperlipidemic probucol, characterized by solid-state NMR. Mol Pharm. 2010;7:299–305.

    Article  PubMed  CAS  Google Scholar 

  62. van Rossum BJ, de Groot CP, Ladizhansky V, Vega S, de Groot HJM. A method for measuring heteronuclear (1H-13C) distances in high speed MAS NMR. J Am Chem Soc. 2000;122:3465–72.

    Article  Google Scholar 

  63. Xu J, Smith PES, Soong R, Ramamoorthy A. A proton spin diffusion based solid-state NMR approach for structural studies on aligned samples. J Phys Chem B. 2011;115:4863–71.

    Article  PubMed  CAS  Google Scholar 

  64. Henrichs PM, Tribone J, Massa DJ, Hewitt JM. Blend miscibility of bisphenol A polycarbonate and poly(ethylene terephthalate) as studied by solid-state high-resolution 13C NMR spectroscopy. Macromolecules. 1988;21:1282–91.

    Article  CAS  Google Scholar 

  65. Schantz S, Ljungqvist N. Structure and dynamics in polymer blends: a 13C CPMAS NMR study of poly(3-octylthiophene)/poly(phenylene oxide). Macromolecules. 1993;26:6517–24.

    Article  CAS  Google Scholar 

  66. McBrierty VJ, Douglass DC. Recent advances in the NMR of solid polymers. J Polym Sci Macromol Rev. 1981;16:295–366.

    Article  CAS  Google Scholar 

  67. Krushelnitsky A, Brauniger T, Reichert D. 15N spin diffusion rate in solid-state NMR of totally enriched proteins: the magic angle spinning frequency effect. J Magn Reson. 2006;182:339–42.

    Article  PubMed  CAS  Google Scholar 

  68. Zumbulyadis N, Antalek B, Windig W, Scaringe RP, Lanzafame AM, Blanton T, et al. Elucidation of polymorph mixtures using solid-state 13C CP/MAS NMR spectroscopy and direct exponential curve resolution algorithm. J Am Chem Soc. 1999;121:11554–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick G. Vogt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogt, F.G., Williams, G.R. Analysis of a Nanocrystalline Polymer Dispersion of Ebselen Using Solid-State NMR, Raman Microscopy, and Powder X-ray Diffraction. Pharm Res 29, 1866–1881 (2012). https://doi.org/10.1007/s11095-012-0713-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0713-9

KEY WORDS

Navigation