Skip to main content
Log in

New Fluorescent Probes Targeting the Mitochondrial-Located Translocator Protein 18 kDa (TSPO) as Activated Microglia Imaging Agents

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To evaluate the utility of new Translocator protein 18 kDa (TSPO)-targeted fluorescent probes for in vivo molecular imaging of activated microglia.

Methods

Compounds 2–4 were synthesized; their stability and affinity for TSPO were determined. Compounds 2–4 were incubated both with Ra2 cells in the presence of LPS, a potent activator of microglia, and with tissue sections of normal and chemically injured brains. Compounds 2–4 were injected into carotid artery or directly in striatum of mice. Cells and tissue sections from these in vitro and in vivo studies were observed by fluorescence microscopy after histochemical treatments.

Results

Compounds 2–4 are stable in both buffer and physiological medium and showed high affinity for TSPO and were found to stain live Ra2 microglial cells effectively. Double staining with Mito Tracker Red suggested that binding sites of compounds 2 and 3 may exist on mitochondria. In vivo studies showed that compounds 2–4 may penetrate in part into brain; moreover, cells in mouse striatum were stained with compounds 2–4 and microglial marker CD11b.

Conclusion

Compounds 2–4 can fluorescently label activated microglia in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

FITC:

fluorescein isothiocyanate isomer 1

LPS:

lipopolysaccharide

PBR:

peripheral benzodiazepine receptor

PET:

positron emission tomography

RBITC:

rhodamine B isothiocyanate

TSPO:

translocator protein 18 kDa

REFERENCES

  1. Venneti S, Lopresti BJ, Wiley CA. The peripheral benzodiazepine receptor (Translocator protein 18 kDa) in microglia: From pathology to imaging. Progr Neurobiol. 2006;80:308–22.

    Article  CAS  Google Scholar 

  2. Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE. In-vivo measurement of activated microglia in dementia. Lancet. 2001;358:461–7.

    Article  PubMed  CAS  Google Scholar 

  3. Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapere JJ, Lindemann P, et al. Translocator protein (18 kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci. 2006;27:402–9.

    Article  PubMed  CAS  Google Scholar 

  4. Cicchetti F, Brownell AL, Williams K, Chen YI, Livni E, Isacson O. Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging. Eur J Nerurosci. 2002;15:991–8.

    Article  CAS  Google Scholar 

  5. Schweitzer PJ, Fallon BA, Mann JJ, Kumar JS. PET tracers for the peripheral benzodiazepine receptor and uses thereof. Drug Discov Today. 2010;15:933–42.

    Article  PubMed  CAS  Google Scholar 

  6. Papadopoulos V, Lecanu L, Brown RC, Han Z, Yao Z-X. Peripheral-type benzodiazepine receptor in neurosteroid biosynthesis, neuropathology and neurological disorders. Neuroscience. 2006;138:749–56.

    Article  PubMed  CAS  Google Scholar 

  7. Costantini P, Jacotot E, Decaudin D, Kroemer G. Mitochondrion as a novel target of anticancer chemotherapy. J Natl Canc Inst. 2000;92:1042–53.

    Article  CAS  Google Scholar 

  8. Banati RB. Visualizing microglial activation in vivo. Glia. 2002;40:206–17.

    Article  PubMed  Google Scholar 

  9. Doorduin J, de Vries EFK, Dierckx RA, Klein HC. PET imaging of the peripheral benzodiazepine receptor: monitoring disease progression and therapy response in neurodegenerative disorders. Curr Pharmaceut Des. 2008;14:3297–315.

    Article  CAS  Google Scholar 

  10. Romeo E, Auta J, Kozikowski AP, Ma A, Papadopoulos V, Puia G, et al. 2-Aryl-3-indoleacetamides (FGIN-1): a new class of potent and specific ligands for the mitochondrial DBI receptor. J Pharmacol Exp Ther. 1992;262:971–8.

    PubMed  CAS  Google Scholar 

  11. Le Fur G, Terrier ML, Vaucher N, Imbault F, Flamier A, Uzan A, et al. Peripheral benzodiazepine binding sites: effect of PK11195, 1-(2-chlorophenyl)-n-(1-methylpropyl)-3-isoquinolinecarboxamide I. In vitro studies. Life Sci. 1983;32:1839–47.

    Article  PubMed  Google Scholar 

  12. Marangos PL, Pate J, Boulenger JP, Clark-Rosenberg R. Characterization of peripheral-type benzodiazepine binding sites in brain using [3H]Ro 5–4864. Mol Pharmacol. 1982;22:26–32.

    PubMed  CAS  Google Scholar 

  13. Chauveau F, Boutin H, Van Camp N, Dollé F, Tavitian B. Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imag. 2008;35:2304–19.

    Article  Google Scholar 

  14. Boutin H, Chauveau F, Thominiaux C, Kuhnast B, Grégoire MC, Jan S, et al. In vivo imaging of brain lesions with [(11)C]CLINME, a new PET radioligand of peripheral benzodiazepine receptors. Glia. 2007;55:1459–68.

    Article  PubMed  Google Scholar 

  15. Trapani G, Franco M, Latrofa A, Ricciardi L, Carotti A, Serra M, et al. Novel 2-phenylimidazo[1,2-a]pyridine derivatives as potent and selective ligands for peripheral benzodiazepine receptors. synthesis, binding affinity, and in vivo studies. J Med Chem. 1999;42:3934–41.

    Article  PubMed  CAS  Google Scholar 

  16. Trapani G, Laquintana V, Denora N, Trapani A, Lopedota A, Latrofa A, et al. Structure-activity relationships and effects on neuroactive steroids in a series of 2-phenylimidazo-[1,2-a]pyridineacetamide peripheral benzodiazepine receptors ligands. J Med Chem. 2005;48:292–305.

    Article  PubMed  CAS  Google Scholar 

  17. Sekimata K, Hatano K, Ogawa M, Abe J, Magata Y, Biggio G, et al. Radiosynthesis and in vivo evaluation of N-[11C]methylated imidazopyridineacetamides as PET tracers for peripheral benzodiazepine receptors. Nucl Med Biol. 2008;35:327–34.

    Article  PubMed  CAS  Google Scholar 

  18. Denora N, Laquintana V, Pisu MG, Dore R, Murru L, Latrofa A, et al. 2-Phenyl-imidazo[1,2-a]pyridine compounds containing hydrophilic groups as potent and selective ligands for peripheral benzodiazepine receptors: synthesis, binding affinity and electrophysiological studies. J Med Chem. 2008;51:6876–88.

    Article  PubMed  CAS  Google Scholar 

  19. Kozikowski AP, Kotoula M, Ma D, Boujrad N, Tuckmantel W, Papadopoulos V. Synthesis and biology of a 7-nitro-2,1,3-benzoxadiazol-4-yl derivative of 2-phenylindole-3-acetamide: a fluorescent probe for the peripheral-type benzodiazepine receptor. J Med Chem. 1997;40:2435–9.

    Article  PubMed  CAS  Google Scholar 

  20. Manning HC, Goebel T, Thompson RC, Price RR, Lee H, Bornhop DJ. Targeted molecular imaging agents for cellular-scale bimodal imaging. Bioconjugate Chem. 2004;15:1488–95.

    Article  CAS  Google Scholar 

  21. Manning HC, Smith SM, Sexton M, Haviland S, Bai M, Cederquist K, et al. A peripheral benzodiazepine receptor targeted agent for in vitro imaging and screening. Bioconjugate Chem. 2006;17:735–40.

    Article  CAS  Google Scholar 

  22. Bai M, Rone MB, Papadopoulos V, Bornhop DJ. A novel functional translocator protein ligand for cancer imaging. Bioconjugate Chem. 2007;18:2018–23.

    Article  CAS  Google Scholar 

  23. Chen Y, Zheng X, Dobhal MP, Gryshuk A, Morgan J, Dougherty TJ, et al. Methyl pyrophorbide-R analogues: potential fluorescent probes for the peripheral-type benzodiazepine receptor. Effect of central metal in photosensitizing efficacy. J Med Chem. 2005;48:3692–5.

    Article  PubMed  CAS  Google Scholar 

  24. Taliani S, Da Pozzo E, Bellandi M, Bendinelli S, Pugliesi I, Simorini F, et al. Novel irreversible fluorescent probes targeting the 18 kDa translocator protein: synthesis and biological characterization. J Med Chem. 2010;53(10):4085–1093.

    Article  PubMed  CAS  Google Scholar 

  25. Samuelson LE, Dukes MJ, Hunt CR, Casey JD, Bornhop DJ. TSPO targeted dendrimer imaging agent: synthesis, characterization and cellular internalization. Bioconjugate Chem. 2009;20(11):2082–9.

    Article  CAS  Google Scholar 

  26. Laquintana V, Denora N, Lopedota A, Suzuki H, Sawada M, Serra M, et al. N-Benzyl-2-(6,8-dichloro-2-(4-chlorophenyl)imidazo[1,2-a]pyridin-3-yl)-N-(6- (7-nitrobenzo[c][1,2,5]oxadiazol-4-ylamino)hexyl)acetamide as a new fluorescent probe for peripheral benzodiazepine receptor and microglial cell visualization. Bioconjugate Chem. 2007;18:1397–407.

    Article  CAS  Google Scholar 

  27. Clark DE. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood-brain barrier penetration. J Pharm Sci. 1999;88:815–21.

    Article  PubMed  CAS  Google Scholar 

  28. Ertl P, Rohde B, Selzer P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem. 2000;43:3714–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Trapani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denora, N., Laquintana, V., Trapani, A. et al. New Fluorescent Probes Targeting the Mitochondrial-Located Translocator Protein 18 kDa (TSPO) as Activated Microglia Imaging Agents. Pharm Res 28, 2820–2832 (2011). https://doi.org/10.1007/s11095-011-0552-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0552-0

KEY WORDS

Navigation