Skip to main content
Log in

Encapsulation and Release of Amphotericin B from an ABC Triblock Fluorous Copolymer

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

PEG-phospholipid-based micelles have been successfully used for the solubilization of several hydrophobic drugs but generally lack sustained stability in blood. Our novel PEG-Fluorocarbon-DSPE polymers were designed to increase stability and improve time-release properties of drug-loaded micelles.

Methods

Novel ABC fluorous copolymers were synthesized, characterized, and used for encapsulation release of amphotericin B. FRET studies were used to study micelle stability.

Results

The micelles formed by the new polymers showed lower critical micelle concentrations and higher viscosity cores than those formed by the polymers lacking the fluorous block. FRET studies indicated that fluorocarbon-containing micelles had increased stability in presence of human serum. Physicochemical properties and in vitro release profile of micelles loaded with Amphotericin B (AmB) were studied.

Conclusions

The effect of PEG length and fluorocarbon incorporation were investigated. The shorter hydrophilic PEG2K induced greater stability than PEG5K by decreasing the proportion of hydrophilic block of the polymer. The fluorocarbon placed between hydrophilic and hydrophobic block formed a fluorous shell contributing to the enhanced thermodynamic stability of micelles and to the drug sustained release. Polymer mPEG2K-F10-DSPE, bearing both a fluorocarbon block and a shorter mPEG, showed the greatest stability and the longest half-life for AmB release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AmB:

Amphotericin B

CMC:

critical micelle concentration

DiIC18(3):

1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine perchlorate

DiOC18(3):

3,3-dioctadecyloxacarbocyanine perchlorate

DSPE:

1,2-distearoyl-sn-glycero-3-phosphoethanolamine

FRET:

Förster resonance energy transfer

mPEG:

methoxy-capped poly(ethylene glycol)

P3P:

1,3-(1,1′-dipyrenyl) propane

PEG:

poly(ethylene glycol)

PEG2K:

poly(ethylene glycol) of an average molecular weight of 2,000

PEG5K:

poly(ethylene glycol) of an average molecular weight of 5,000

REFERENCES

  1. Singh S, Dash AK. Paclitaxel in cancer treatment: perspectives and prospects of its delivery challenges. Crit Rev Ther Drug Carrier Syst. 2009;26(4):333–72.

    PubMed  CAS  Google Scholar 

  2. Yoon HJ, Jang WD. Polymeric supramolecular systems for drug delivery. J Mater Chem. 2010;20(2):211–22.

    Article  CAS  Google Scholar 

  3. Allen TM, Hansen C, Martin F, Redemann C, Yauyoung A. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives invivo. Biochim Biophys Acta. 1991;1066(1):29–36.

    Article  PubMed  CAS  Google Scholar 

  4. Ashok B, Arleth L, Hjelm RP, Rubinstein I, Onyuksel H. In vitro characterization of PEGylated phospholipid micelles for improved drug solubilization: effects of PEG chain length and PC incorporation. J Pharm Sci. 2004;93(10):2476–87.

    Article  PubMed  CAS  Google Scholar 

  5. Gabizon AA, Barenholz Y, Bialer M. Prolongation of the circulation time of doxorubicin encapsulated in liposomes containing a polyethylene glycol-derivatized phospholipid—pharmacokinetic studies in rodents and dogs. Pharm Res. 1993;10(5):703–8.

    Article  PubMed  CAS  Google Scholar 

  6. Lukyanov AN, Torchilin VP. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev. 2004;56(9):1273–89.

    Article  PubMed  CAS  Google Scholar 

  7. Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. J Control Release. 2001;73(2–3):137–72.

    Article  PubMed  CAS  Google Scholar 

  8. Chen H, Kim S, He W, Wang H, Low PS, Park K, et al. Fast release of lipophilic agents from circulating PEG-PDLLA micelles revealed by in vivo Forster resonance energy transfer imaging. Langmuir. 2008;24(10):5213–7.

    Article  PubMed  CAS  Google Scholar 

  9. Savic R, Azzam T, Eisenberg A, Maysinger D. Assessment of the integrity of poly(caprolactone)-b-poly(ethylene oxide) micelles under biological conditions: a fluorogenic-based approach. Langmuir. 2006;22(8):3570–8.

    Article  PubMed  CAS  Google Scholar 

  10. Xu XY, Zhang XF, Wang XH, Li YX, Jing XB. Comparative study of paclitaxel physically encapsulated in and chemically conjugated with PEG-PLA. Polym Adv Technol. 2009;20(11):843–8.

    Article  CAS  Google Scholar 

  11. Bae KH, Lee Y, Park TG. Oil-encapsulating PEO-PPO-PEO/PEG shell cross-linked nanocapsules for target-specific delivery of paclitaxel. Biomacromolecules. 2007;8(2):650–6.

    Article  PubMed  CAS  Google Scholar 

  12. O’Reilly RK, Hawker CJ, Wooley KL. Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chem Soc Rev. 2006;35(11):1068–83.

    Article  PubMed  Google Scholar 

  13. Shuai XT, Merdan T, Schaper AK, Xi F, Kissel T. Core-cross-linked polymeric micelles as paclitaxel carriers. Bioconjug Chem. 2004;15(3):441–8.

    Article  PubMed  CAS  Google Scholar 

  14. Xu YM, Meng FH, Cheng R, Zhong ZY. Reduction-sensitive reversibly crosslinked biodegradable micelles for triggered release of doxorubicin. Macromol Biosci. 2009;9(12):1254–61.

    Article  PubMed  CAS  Google Scholar 

  15. Tian L, Yam L, Wang JZ, Tat H, Uhrich KE. Core crosslinkable polymeric micelles from PEG-lipid amphiphiles as drug carriers. J Mater Chem. 2004;14(14):2317–24.

    Article  CAS  Google Scholar 

  16. Kiss LE, Kovesdi I, Rabai J. An improved design of fluorophilic molecules: prediction of the ln P fluorous partition coefficient, fluorophilicity, using 3D QSAR descriptors and neural networks. J Fluor Chem. 2001;108(1):95–109.

    Article  CAS  Google Scholar 

  17. Riess JG. Highly fluorinated amphiphilic molecules and self-assemblies with biomedical potential. Curr Opin Colloid Interface Sci. 2009;14(5):294–304.

    Article  CAS  Google Scholar 

  18. Wolfson MR, Greenspan JS, Shaffer TH. Pulmonary administration of vasoactive substances by perfluorochemical ventilation. Pediatrics. 1996;97(4):449–55.

    PubMed  CAS  Google Scholar 

  19. Kent KM, Cleman MW, Cowley MJ, Forman MB, Jaffe CC, Kaplan M, et al. Reduction of myocardial-ischemia during percutaneous transluminal coronary angioplasty with oxygenated fluosol. Am J Cardiol. 1990;66(3):279–84.

    Article  PubMed  CAS  Google Scholar 

  20. Spahn DR, van Brempt R, Theilmeier G, Reibold JP, Welte M, Heinzerling H, et al. European perflubron emulsion study, G., Perflubron emulsion delays blood transfusions in orthopedic surgery. Anesthesiology. 1999;91(5):1195–208.

    Article  PubMed  CAS  Google Scholar 

  21. Krafft MP. Fluorocarbons and fluorinated amphiphiles in drug delivery and biomedical research. Adv Drug Deliv Rev. 2001;47(2–3):209–28.

    Article  PubMed  CAS  Google Scholar 

  22. Janjic JM, Ahrens ET. Fluorine-containing nanoemulsions for MRI cell tracking. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(5):492–501.

    Article  PubMed  CAS  Google Scholar 

  23. Shao K, Huang RQ, Li JF, Han LA, Ye LY, Lou JN, et al. Angiopep-2 modified PE-PEG based polymeric micelles for Amphotericin B delivery targeted to the brain. J Control Release. 2010;147(1):118–26.

    Article  PubMed  CAS  Google Scholar 

  24. Vakil R, Knilans K, Andes D, Kwon GS. Combination antifungal therapy involving Amphotericin B, rapamycin and 5-fluorocytosine using PEG-phospholipid micelles. Pharm Res. 2008;25(9):2056–64.

    Article  PubMed  CAS  Google Scholar 

  25. Vakil R, Kwon GS. Effect of cholesterol on the release of Amphotericin B from PEG-Phospholilpid micelles. Mol Pharm. 2008;5(1):98–104.

    Article  PubMed  CAS  Google Scholar 

  26. Gallis HA, Drew RH, Pickard WW. Amphotericin-B - 30 years of clinical-experience. Rev Infect Dis. 1990;12(2):308–29.

    Article  PubMed  CAS  Google Scholar 

  27. Girois SB, Chapuis F, Decullier E, Revol BGP. Adverse effects of antifungal therapies in invasive fungal infections: review and meta-analysis. Eur J Clin Microbiol Infect Dis. 2005;24(2):119–30.

    Article  PubMed  CAS  Google Scholar 

  28. Barwicz J, Tancrede P. The effect of aggregation state of amphotericin-B on its interactions with cholesterol- or ergosterol-containing phosphatidylcholine monolayers. Chem Phys Lipids. 1997;85(2):145–55.

    Article  PubMed  CAS  Google Scholar 

  29. Brajtburg J, Bolard J. Carrier effects on biological activity of Amphotericin B. Clin Microbiol Rev. 1996;9(4):512–31.

    PubMed  CAS  Google Scholar 

  30. Bolard J, Legrand P, Heitz F, Cybulska B. One-sided action of amphotericin-B on cholesterol-containing membranes is determined by its self-association in the medium. Biochemistry. 1991;30(23):5707–15.

    Article  PubMed  CAS  Google Scholar 

  31. Gruda I, Dussault N. Effect of the aggregation state of Amphotericin-B on its interaction with ergosterol. Biochem Cell Biol-Biochimie Biol Cell. 1988;66(3):177–83.

    Article  CAS  Google Scholar 

  32. Groll AH, Giri N, Petraitis V, Petraitiene R, Candelario M, Bacher JS, et al. Comparative efficacy and distribution of lipid formulations of Amphotericin B in experimental Candida albicans infection of the central nervous system. J Infect Dis. 2000;182(1):274–82.

    Article  PubMed  CAS  Google Scholar 

  33. Imhof A, Walter RB, Schaffner A. Continuous infusion of escalated doses of Amphotericin B deoxycholate: an open-label observational study. Clin Infect Dis. 2003;36(8):943–51.

    Article  PubMed  CAS  Google Scholar 

  34. Eriksson U, Seifert B, Schaffner A. Comparison of effects of Amphotericin B deoxycholate infused over 4 or 24 hours: randomised controlled trial. Br Med J. 2001;322(7286):579–82.

    Article  CAS  Google Scholar 

  35. Peleg AY, Woods ML. Continuous and 4 h infusion of Amphotericin B: a comparative study involving high-risk haematology patients. J Antimicrob Chemother. 2004;54(4):803–8.

    Article  PubMed  CAS  Google Scholar 

  36. Hiemenz JW. Amphotericin B deoxycholate administered by continuous infusion: does the dosage make a difference? Clin Infect Dis. 2003;36(8):952–3.

    Article  PubMed  CAS  Google Scholar 

  37. Bates DW, Su L, Yu DT, Chertow GM, Seger DL, Gomes DRJ, et al. Mortality and costs of acute renal failure associated with Amphotericin B therapy. Clin Infect Dis. 2001;32(5):686–93.

    Article  PubMed  CAS  Google Scholar 

  38. Abla M, Durand G, Pucci B. Glucose-based surfactants with hydrogenated, fluorinated, or hemifluorinated tails: synthesis and comparative physical-chemical characterization. J Org Chem. 2008;73(21):8142–53.

    Article  PubMed  CAS  Google Scholar 

  39. Lavasanifar A, Samuel J, Kwon GS. The effect of alkyl core structure on micellar properties of poly(ethylene oxide)-block-poly(L-aspartamide) derivatives. Colloids Surf B Biointerfaces. 2001;22(2):115–26.

    Article  PubMed  CAS  Google Scholar 

  40. Winnik FM. Photophysics of preassociated pyrenes in aqueous polymer-solutions and in other organized media. Chem Rev. 1993;93(2):587–614.

    Article  CAS  Google Scholar 

  41. Vakil R, Kwon GS. Poly(ethylene glycol)-b-poly(epsilon-caprolactone) and PEG-phospholipid form stable mixed micelles in aqueous media. Langmuir. 2006;22(23):9723–9.

    Article  PubMed  CAS  Google Scholar 

  42. Kim SY, Shin ILG, Lee YM, Cho CS, Sung YK. Methoxy poly(ethylene glycol) and epsilon-caprolactone amphiphilic block copolymeric micelle containing indomethacin. II. Micelle formation and drug release behaviours. J Control Release. 1998;51(1):13–22.

    Article  PubMed  CAS  Google Scholar 

  43. Francis MF, Lavoie L, Winnik FM, Leroux JC. Solubilization of cyclosporin A in dextran-g-polyethyleneglycolalkyl ether polymeric micelles. Eur J Pharm Biopharm. 2003;56(3):337–46.

    Article  PubMed  CAS  Google Scholar 

  44. Jeong YI, Cheon JB, Kim SH, Nah JW, Lee YM, Sung YK, et al. Clonazepam release from core-shell type nanoparticles in vitro. J Control Release. 1998;51(2–3):169–78.

    Article  PubMed  CAS  Google Scholar 

  45. Riess JG. Fluorous micro- and nanophases with a biomedical perspective. Tetrahedron. 2002;58(20):4113–31.

    Article  CAS  Google Scholar 

  46. Sadtler VM, Giulieri F, Krafft MP, Riess JG. Micellization and adsorption of fluorinated amphiphiles: questioning the 1CF(2)approximate to 1.5CH(2) rule. Chemistry-a European Journal. 10;4:1952–6.

    Article  Google Scholar 

  47. Kissa E. Fluorinated surfactants: synthesis, properties, applications, vol. 50. New York: M. Dekker; 1994.

    Google Scholar 

  48. Graciani MD, Rodriguez A, Munoz M, Moya ML. Micellar solutions of sulfobetaine Surfactants in water-ethylene glycol mixtures: surface tension, fluorescence, spectroscopic, conductometric, and kinetic studies. Langmuir. 2005;21(16):7161–9.

    Article  CAS  Google Scholar 

  49. Diezi TA, Bae Y, Kwon GS. Enhanced stability of PEG-block-poly(N-hexyl stearate L-aspartamide) Micelles in the Presence of Serum Proteins. Mol Pharm. 2010;7(4):1355–60.

    Article  PubMed  CAS  Google Scholar 

  50. Vakil R, Kwon GS. PEG-phospholipid micelles for the delivery of Amphotericin B. J Control Release. 2005;101(1–3):386–9.

    PubMed  CAS  Google Scholar 

  51. Mukerjee P. Fluorocarbon hydrocarbon interactions in micelles and other lipid assemblies, at interfaces, and in solutions. Colloid Surface Physicochem Eng Aspect). 1994;84(1):1–10.

    Article  CAS  Google Scholar 

  52. Soo PL, Luo LB, Maysinger D, Eisenberg A. Incorporation and release of hydrophobic probes in biocompatible polycaprolactone-block-poly(ethylene oxide) micelles: implications for drug delivery. Langmuir. 2002;18(25):9996–10004.

    Article  CAS  Google Scholar 

  53. Shuai XT, Ai H, Nasongkla N, Kim S, Gao JM. Micellar carriers based on block copolymers of poly(e-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J Contr Release. 2004;98(3):415–26.

    Article  CAS  Google Scholar 

  54. Forrest ML, Won CY, Malick AW, Kwon GS. In vitro release of the mTOR inhibitor rapamycin from poly(ethylene glycol)-b-poly(epsilon-caprolactone) micelles. J Contr Release. 2006;110(2):370–7.

    Article  CAS  Google Scholar 

  55. Lasic DD, Martin FJ. Stealth liposomes. Boca Raton: CRC; 1995.

    Google Scholar 

  56. Torchilin VP, Shtilman MI, Trubetskoy VS, Whiteman K, Milstein AM. Amphiphilic vinyl-polymers effectively prolong liposome circulation time in-vivo. Biochim Biophys Acta-Biomembr. 1994;1195(1):181–4.

    Article  CAS  Google Scholar 

  57. Lukyanov AN, Gao ZG, Mazzola L, Torchilin VP. Polyethylene glycol-diacyllipid micelles demonstrate increased acculumation in subcutaneous tumors in mice. Pharm Res. 2002;19(10):1424–9.

    Article  PubMed  CAS  Google Scholar 

  58. Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal doxorubicin - Review of animal and human studies. Clin Pharmacokinet. 2003;42(5):419–36.

    Article  PubMed  CAS  Google Scholar 

  59. Maruyama K, Yuda T, Okamoto A, Ishikura C, Kojima S, Iwatsuru M. Effect of molecular-weight in amphipathic polyethyleneglycol on prolonging the circulation time of large unilamellar liposomes. Chem Pharm Bull. 1991;39(6):1620–2.

    Article  PubMed  CAS  Google Scholar 

  60. Liu F, Liu D. Long-circulating emulsions (oil-in-water) as carriers for lipophilic drugs. Pharm Res. 1995;12(7):1060–4.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

The authors would like to thank Dr. Glen S. Kwon and Thomas A. Diezi, University of Wisconsin, for technical advice and thoughtful suggestions. This project was supported in part by NIH (GM079375) and NSF (CHE 0518112) to SM. We also thank the University of Wisconsin-Madison School of Pharmacy for support. JPJ acknowledges support from the Korean Research Foundation (KRF-2008-357-E00065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Mecozzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jee, JP., McCoy, A. & Mecozzi, S. Encapsulation and Release of Amphotericin B from an ABC Triblock Fluorous Copolymer. Pharm Res 29, 69–82 (2012). https://doi.org/10.1007/s11095-011-0511-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0511-9

KEY WORDS

Navigation