Skip to main content

Advertisement

Log in

Population Pharmacokinetic Modeling of trans-Resveratrol and Its Glucuronide and Sulfate Conjugates After Oral and Intravenous Administration in Rats

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To develop a population pharmacokinetic (PK) model which allowed the simultaneous modeling of trans-resveratrol and its glucuronide and sulfate conjugates.

Methods

Male Sprague–Dawley rats were administered i.v. and p.o. with 2, 10 and 20 mg·kg−1 of trans-resveratrol. Blood was collected at different times during 24 h. An integrated PK model was developed using a sequential analysis, with non-linear mixed effect modeling (NONMEM). A prediction-corrected visual predictive check (pcVPC) was used to assess model performance. The model predictive capability was also evaluated with simulations after the i.v. administration of 15 mg·kg−1 that were compared with an external data set.

Results

Disposition PK of trans-resveratrol and its metabolites was best described by a three-linked two-compartment model. Clearance of trans-resveratrol by conversion to its conjugates occurred by a first-order process, whereas both metabolites were eliminated by parallel first-order and Michaelis-Menten kinetics. The pcVPC confirmed the model stability and precision. The final model was successfully applied to the external data set showing its robustness.

Conclusions

A robust population PK model has been built for trans-resveratrol and its glucuronide and sulfate conjugates that adequately predict plasmatic concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

AIC:

Akaike information criterion

AUC:

area under the curve

BCRP:

breast cancer resistance protein

DV:

observed concentrations

IAV:

inter-animal variability

IPRED:

individual model predicted concentrations

MRP:

multidrug resistance protein

OFV:

objective function value

pcVPC:

prediction corrected visual predictive check

PD:

pharmacodynamic

PK:

pharmacokinetic

PRED:

population model predicted concentrations

RSE:

relative standard error

UGT:

UDP-glucuronosyltransferase

REFERENCES

  1. Pervaiz S, Holme AL. Resveratrol: its biologic targets and functional activity. Antioxid Redox Signal. 2009;11(11):2851–97.

    Article  PubMed  CAS  Google Scholar 

  2. Brisdelli F, D’Andrea G, Bozzi A. Resveratrol: a natural polyphenol with multiple chemopreventive properties. Curr Drug Metab. 2009;10(6):530–46.

    PubMed  CAS  Google Scholar 

  3. Juan ME, Vinardell MP, Planas JM. The daily oral administration of high doses of trans-resveratrol to rats for 28 days is not harmful. J Nutr. 2002;132(2):257–60.

    PubMed  CAS  Google Scholar 

  4. Cottart CH, Nivet-Antoine V, Laguillier-Morizot C, Beaudeux JL. Resveratrol bioavailability and toxicity in humans. Mol Nutr Food Res. 2010;54(1):7–16.

    Article  PubMed  CAS  Google Scholar 

  5. Juan ME, Buenafuente J, Casals I, Planas JM. Plasmatic levels of trans-resveratrol in rats. Food Res Int. 2002;35(2–3):195–9.

    Article  CAS  Google Scholar 

  6. Marier JF, Vachon P, Gritsas A, Zhang J, Moreau JP, Ducharme MP. Metabolism and disposition of resveratrol in rats: extent of absorption, glucuronidation, and enterohepatic recirculation evidenced by a linked-rat model. J Pharmacol Exp Ther. 2002;302(1):369–73.

    Article  PubMed  CAS  Google Scholar 

  7. Sale S, Verschoyle RD, Boocock D, Jones DJ, Wilsher N, Ruparelia KC, et al. Pharmacokinetics in mice and growth-inhibitory properties of the putative cancer chemopreventive agent resveratrol and the synthetic analogue trans 3, 4, 5, 4′-tetramethoxystilbene. Br J Cancer. 2004;90(3):736–44.

    Article  PubMed  CAS  Google Scholar 

  8. Boocock DJ, Faust GE, Patel KR, Schinas AM, Brown VA, Ducharme MP, et al. Phase I dose escalation PK study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. Cancer Epidemiol Biomark Prev. 2007;16(6):1246–52.

    Article  CAS  Google Scholar 

  9. Almeida L, Vaz-da-Silva M, Falcão A, Soares E, Costa R, Loureiro AI, et al. PK and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Mol Nutr Food Res. 2009;53 Suppl 1:S7–15.

    Article  PubMed  Google Scholar 

  10. Nunes T, Almeida L, Rocha JF, Falcão A, Fernandes-Lopes C, Loureiro AI, et al. Pharmacokinetics of trans-resveratrol following repeated administration in healthy elderly and young subjects. J Clin Pharmacol. 2009;49(12):1477–82.

    Article  PubMed  CAS  Google Scholar 

  11. Juan ME, González-Pons E, Planas JM. Multidrug resistance proteins restrain the intestinal absorption of trans-resveratrol in rats. J Nutr. 2010;140(3):489–95.

    Article  PubMed  CAS  Google Scholar 

  12. Hebbar V, Shen G, Hu R, Kim BR, Chen C, Korytko PJ, et al. Toxicogenomics of resveratrol in rat liver. Life Sci. 2005;76(20):2299–314.

    Article  PubMed  CAS  Google Scholar 

  13. Lançon A, Hanet N, Jannin B, Delmas D, Heydel JM, Lizard G, et al. Resveratrol in human hepatoma HepG2 cells: metabolism and inducibility of detoxifying enzymes. Drug Metab Dispos. 2007;35(5):699–703.

    Article  PubMed  Google Scholar 

  14. Alfaras I, Pérez M, Juan ME, Merino G, Prieto JG, Planas JM, et al. Involvement of breast cancer resistance protein (BCRP1/ABCG2) in the bioavailability and tissue distribution of trans-resveratrol in knockout mice. J Agric Food Chem. 2010;58(7):4523–8.

    Article  PubMed  CAS  Google Scholar 

  15. Juan ME, Maijó M, Planas JM. Quantification of trans-resveratrol and its metabolites in rat plasma and tissues by HPLC. J Pharm Biomed Anal. 2010;51(2):391–8.

    Article  PubMed  CAS  Google Scholar 

  16. Hem A, Smith AJ, Solberg P. Saphenous vein puncture for blood sampling of the mouse, rat, hamster, gerbil, guinea pig, ferret and mink. Lab Anim. 1998;32(4):364–8.

    Article  PubMed  CAS  Google Scholar 

  17. Beal SL, Sheiner LB. NONMEM User’s guide. Icon Development Solutions: Ellicot City, MD 1989–2006.

  18. Jonsson EN, Karlsson MO. Xpose: an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput Meth Programs Biomed. 1999;58(1):51–64.

    Article  CAS  Google Scholar 

  19. Lindbom L, Pihlgren P, Jonsson N. PsN-Toolkit: a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Meth Programs Biomed. 2005;79(3):241–57.

    Article  Google Scholar 

  20. Yamaoka T, Nakagawa T. Uno, Application of Akaike’s Information Criterion (AIC) in the evaluation of linear pharmacokinetics equations. J Pharmacokinet Biopharm. 1978;6(2):165–75.

    Article  PubMed  CAS  Google Scholar 

  21. Karlsson MO, Holford NH. A Tutorial on Visual Predictive Checks. 2008, pp 17 (Abstract 1434). Available at: http://www.page-meeting.org/?abstract=1434.

  22. Bergstrand M, Hooker AC, Wallin JE, Karlsson MO. Prediction-Corrected Visual Predictive Checks for Diagnosing Nonlinear Mixed-Effects Models. AAPS J. 2011. doi:10.1208/s12248-011-9255-z.

  23. Savic RM, Karlsson MO. Importance of shrinkage in empirical bayes estimates for diagnostics: problems and solutions. AAPS J. 2009;11(3):558–69.

    Article  PubMed  Google Scholar 

  24. van de Wetering K, Burkon A, Feddema W, Bot A, de Jonge H, Somoza V, et al. Intestinal breast cancer resistance protein (BCRP)/Bcrp1 and multidrug resistance protein 3 (MRP3)/Mrp3 are involved in the pharmacokinetics of resveratrol. Mol Pharmacol. 2009;75(4):876–85.

    Article  PubMed  Google Scholar 

  25. de Santi C, Pietrabissa A, Mosca F, Pacifici GM. Glucuronidation of resveratrol, a natural product present in grape and wine, in the human liver. Xenobiotica. 2000;30(11):1047–54.

    Article  PubMed  Google Scholar 

  26. Sabolovic N, Humbert AC, Radominska-Pandya A, Magdalou J. Resveratrol is efficiently glucuronidated by UDP-glucuronosyltransferases in the human gastrointestinal tract and in Caco-2 cells. Biopharm Drug Dispos. 2006;27(4):181–9.

    Article  PubMed  CAS  Google Scholar 

  27. Maier-Salamon A, Hagenauer B, Reznicek G, Szekeres T, Thalhammer T, Jäger W. Metabolism and disposition of resveratrol in the isolated perfused rat liver: role of Mrp2 in the biliary excretion of glucuronides. J Pharm Sci. 2008;97(4):1615–28.

    Article  PubMed  CAS  Google Scholar 

  28. Andlauer W, Kolb J, Siebert K, Fürst P. Assessment of resveratrol bioavailability in the perfused small intestine of the rat. Drugs Exp Clin Res. 2000;26(2):47–55.

    PubMed  CAS  Google Scholar 

  29. Kuhnle G, Spencer JP, Chowrimootoo G, Schroeter H, Debnam ES, Srai SK, et al. Resveratrol is absorbed in the small intestine as resveratrol glucuronide. Biochem Biophys Res Commun. 2000;272(1):212–7.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Ministerio de Ciencia y Tecnología grants AGL2005-05728 and AGL2009-12866 and the Generalitat de Catalunya grants 2005-SGR-00632 and 2009-SGR-00471.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Colom.

APPENDIX

APPENDIX

The NONMEM code used in the final model

Modeling of Intravenous Data

$PROBLEM trans-resveratrol and its conjugates plasmatic concentrations

$INPUT ID TIME AMT DV MDV EVID CMT WGT ROUT DOSA;DOSA=ACTUAL DOSE

$DATA data.csv IGNORE=#

IGNORE (ROUT.EQ.2)

$SUBROUTINES ADVAN6 TOL=3

$MODEL

COMP = (CENTRALRESV,DEFOBS)

 

COMP = (PERIPHRESV)

 

COMP = (CENTRALGLUC)

 

COMP = (PERIPHGLUC)

 

COMP = (CENTRALSULF)

 

COMP = (PERIPHSULF)

 

$PK

 

;DISPOSITION PARAMETERS

 

;trans-Resveratrol

  

TVCL1

= THETA(1)

 

CL1

= TVCL1*EXP(ETA(1))

;Plasmatic CL of resveratrol

V1

= THETA(2)

;Central compartment V of resveratrol

Q

= THETA(3)*EXP(ETA(2))

;Distributional CL of resveratrol

V2

= THETA(4)

;Peripheral compartment V of resveratrol

;Glucuronide

  

V3

= 0.05

;Central compartment V of the glucuronide

QM1

= THETA(5)

;Distributional CL of the glucuronide

V4

= THETA(6) *EXP(ETA(3))

;Peripheral compartment V of the glucuronide

;Linear elimination process

  

CL2

= THETA(7)

;Plasmatic CL of the glucuronide

;Non-linear elimination process

  

VMG

= THETA(8)

;Maximal elimination rate of the glucuronide

KMG

= THETA(9)

;Concentration of the glucuronide at which the elimination is half maximal

FM

= THETA(10)

;Fraction of resveratrol converted to its glucuronide

;Sulfate

  

V5

= THETA(11)

;Central compartment V of the sulfate

V6

= THETA(12)

;Peripheral compartment V of the sulfate

QM2

= THETA(13)

;Distributional CL of the sulfate

;Linear elimination process

  

CL3

= THETA(14)

;Plasmatic CL of the sulfate

;Non-linear elimination process

  

VMS

= THETA(15)

;Maximal elimination rate of the sulfate

KMS

= THETA(16)

;Concentration of the sulfate at which the elimination is half maximal

S1 = V1

S3 = V3

S5 = V5

;RATE CONSTANTS

K12 = Q/V1

K21 = Q/V2

K30 = CL2/V3

K34 = QM1/V3

K43 = QM1/V4

K56 = QM2/V5

K65 = QM2/V6

K50 = CL3/V5

;DIFFERENTIAL EQUATIONS

$DES

DADT(1)

= −K12*A(1)+K21*A(2)-(CL1/V1)*FM*A(1)-(CL1/V1)*(1-FM)*A(1)

DADT(2)

= K12*A(1)-K21*A(2)

DADT(3)

= (CL1/V1)*FM*A(1)-K30*A(3) + K43*A(4)-K34*A(3)-(VMG*A(3))/(KMG + A(3))

DADT(4)

= K34*A(3)-K43*A(4)

DADT(5)

= (CL1/V1)*(1-FM)*A(1)-K56*A(5) + K65*A(6)-K50*A(5))-(VMS*A(5))/(KMS + A(5))

DADT(6)

= K56*A(5)-K65*A(6)

;RESIDUAL ERROR FOR LOG-TRANSFORMED DATA

$ERROR

IPRED

= −5

IF(F.GT.0)

IPRED= LOG(F)

IF(CMT.EQ.2)

Y= IPRED + EPS(1)

IF(CMT.EQ.4)

Y= IPRED + EPS(2)

IF(CMT.EQ.6)

Y= IPRED + EPS(3)

IWRES

= (DV-IPRED)

;INITIAL ESTIMATES

$THETA

$OMEGA

$SIGMA

$ESTIMATION

$COVARIANCE

Modeling of Oral Data

$PROBLEM trans-resveratrol and its conjugates plasmatic concentrations

$INPUT ID TIME AMT DV MDV EVID CMT WGT ROUT DOSA;DOSA=ACTUAL DOSE

$DATA data.csv IGNORE=#

IGNORE (ROUT.EQ.1)

$SUBROUTINES ADVAN6 TOL=3

$MODEL

COMP = (DEPOT)

COMP = (CENTRALRESV,DEFOBS)

COMP = (PERIPHRESV)

COMP = (CENTRALGLUC)

COMP = (PERIPHGLUC)

COMP = (CENTRALSULF)

COMP = (PERIPHSULF)

$PK

“FIRST

“ COMMON/PRCOMG/IDUM1,IDUM2,IMAX,IDUM4,IDUM5

“ INTEGER IDUM1,IDUM2,IMAX,IDUM4,IDUM5

“ IMAX=70000000

;DISPOSITION PARAMETERS

;trans-Resveratrol

  

TVCL1

= THETA(1)

 

CL1

= TVCL1*EXP(ETA(1))

;Plasmatic CL of resveratrol

V2

= THETA(2)

;Central compartment V of resveratrol

Q

= THETA(3)*EXP(ETA(2))

;Distributional CL of resveratrol

V3

= THETA(4)

;Peripheral compartment V of resveratrol

;Glucuronide

  

V4

= 0.05

;Central compartment V of the glucuronide

QM1

= THETA(5)

;Distributional CL of the glucuronide

V5

= THETA(6) *EXP(ETA(3))

;Peripheral compartment V of the glucuronide

FM

= THETA(7)

;Fraction of resveratrol converted to its glucuronide

;Linear elimination process

  

CL2

= THETA(8)

;Plasmatic CL of the glucuronide

;Non-linear elimination process

  

VMG

= THETA(9)

;Maximal elimination rate of the glucuronide

KMG

= THETA(10)

;Concentration of the glucuronide at which the elimination is half maximal

;Sulfate

  

V6

= THETA(11)

;Central compartment V of the sulfate

V7

= THETA(12)

;Peripheral compartment V of the sulfate

QM2

= THETA(13)

;Distributional CL of the sulfate

;Linear elimination process

  

CL3

= THETA(14)

;Plasmatic CL of the sulfate

;Non-linear elimination process

  

VMS

= THETA(15)

;Maximal elimination rate of the sulfate

KMS

= THETA(16)

;Concentration of the sulfate at which the elimination is half maximal

;ABSORPTION PARAMETERS

KA1

= THETA(17)

;Absorption rate constant

KA2

= THETA(18)

;Transformation (from the parent compound to the glucuronide)/Absorption rate constant

TVF1

= THETA(19)*(1-THETA(20)*DOSA)

 

F1

= TVF1*EXP(ETA(4))

;Bioavailability

;SCALE FACTORS

S2 = V2

S4 = V4

S6 = V6

;RATE CONSTANTS

K23 = Q/V2

K32 = Q/V3

K40 = CL2/V4

K45 = QM1/V4

K54 = QM1/V5

K67 = QM2/V6

K76 = QM2/V7

K60 = CL3/V6

;DIFFERENTIAL EQUATIONS

$DES

DADT(1)

= −KA1*F1*A(1)-KA2*(1-F1)*A(1)

DADT(2)

= KA1*F1*A(1)-K23*A(2)+K32*A(3)-(CL1/V2)*FM*A(2)-(CL1/V2)*(1-FM)*A(2)

DADT(3)

= K23*A(2)-K32*A(3)

DADT(4)

= KA2*(1-F1)*A(1)+(CL1/V2)*FM*A(2)-K40*A(4)+K54*A(5)-K45*A(4)-(VMG*A(4))/(KMG+A(4))

DADT(5)

= K45*A(4)-K54*A(5)

DADT(6)

= (CL1/V2)*(1-FM)*A(2)-K67*A(6)+K76*A(7)-K60*A(6))-(VMS*A(6))/(KMS+A(6))

DADT(7)

= K67*A(6)-K76*A(7)

;RESIDUAL ERROR FOR LOG-TRANSFORMED DATA

$ERROR

IPRED

= −5

 

IF(F.GT.0)

IPRED

= LOG(F)

IF(CMT.EQ.2)

Y

= IPRED+EPS(1)

IF(CMT.EQ.4)

Y

= IPRED+EPS(2)

IF(CMT.EQ.6)

Y

= IPRED+EPS(3)

IWRES

= (DV-IPRED)

 

;INITIAL ESTIMATES

$THETA

$OMEGA

$SIGMA

$ESTIMATION

$COVARIANCE

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colom, H., Alfaras, I., Maijó, M. et al. Population Pharmacokinetic Modeling of trans-Resveratrol and Its Glucuronide and Sulfate Conjugates After Oral and Intravenous Administration in Rats. Pharm Res 28, 1606–1621 (2011). https://doi.org/10.1007/s11095-011-0395-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0395-8

KEY WORDS

Navigation