Skip to main content
Log in

Biomagnetic Methods: Technologies Applied to Pharmaceutical Research

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Biomagnetic methods have been designed for a wide range of applications. Recently, such methods have been proposed as alternatives to scintigraphy for evaluating of a number of pharmaceutical processes in vitro as well as under the influence of gastrointestinal physiological parameters. In this review, physical characterization as well as the most recent applications of Superconducting Quantum Interference Device (SQUID), Anisotropic Magnetoresistive (AMR) and AC Biosusceptometry (ACB) in the pharmaceutical research will be explored. Moreover, their current status and how these technologies can be employed to improve the knowledge about the impact of gastrointestinal physiology on drug delivery in association with pharmacokinetic outcomes, termed pharmacomagnetography, will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

REFERENCES

  1. McConnel EL, Fadda HM, Basit AW. Gut instincts: explorations in intestinal physiology and drug delivery. Int J Pharm. 2008;364(2):213–26.

    Google Scholar 

  2. Dressman JB, Amidon GL, Reppas C, Shah VP. Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm Res. 1998;15:11–22.

    CAS  PubMed  Google Scholar 

  3. Wilding IR, Coupe AJ, Davis SS. The role of γ-scintigraphy in oral drug delivery. Adv Drug Deliv Rev. 2001;46:103–24.

    CAS  PubMed  Google Scholar 

  4. Digenis GA, Sandefer EP, Page RC, Doll WJ. Gamma scintigraphy: an envolving technology in pharmaceutical formulation development: part 1. Pharm Sci Tech. 1998;1(3):100–7.

    Google Scholar 

  5. Digenis GA, Sandefer EP, Page RC, Doll WJ. Gamma scintigraphy: an envolving technology in pharmaceutical formulation development: part 2. Pharm Sci Tech. 1998;1(4):160–5.

    CAS  Google Scholar 

  6. Jain S, Dani P, Sharma RK. Pharmacoscintigraphy: a blazing trail for the evaluation of new drugs and delivery systems. Crit Rev Ther Drug Carrier Syst. 2009;26(4):373–426.

    CAS  PubMed  Google Scholar 

  7. Hodges LA, Connolly SM, Band J, O’Mahony B, Ugurlu T, Turkoglu M, et al. Scintigraphic evaluation of colon targeting pectin–HPMC tablets in healthy volunteers. Int J Pharm. 2009;370:144–50.

    CAS  PubMed  Google Scholar 

  8. Weitschies W, Kosch O, Mönnikes H, Trahms L. Magnetic marker monitoring: an application of biomagnetic measurement instrumentation and principles for the determination of the gastrointestinal behavior of magnetically marked dosage forms. Adv Drug Deliv Rev. 2005;57(8):1210–22.

    CAS  PubMed  Google Scholar 

  9. Corá LA, Romeiro FG, Stelzer M, Américo MF, Oliveira RB, Baffa O, et al. AC Biosusceptometry in the study of drug delivery. Adv Drug Deliv Rev. 2005;57(8):1223–41.

    PubMed  Google Scholar 

  10. Andrä W, Danan H, Kirmsse W, Kramer HH, Saupe P, Schmieg R, et al. A novel method for real-time magnetic marker monitoring in the gastrointestinal tract. Phys Med Biol. 2000;45:3081–93.

    PubMed  Google Scholar 

  11. Corá LA, Américo MF, Romeiro FG, Oliveira RB, Miranda JRA. Pharmaceutical applications of AC Biosusceptometry. Eur J Pharm Biopharm. 2010;74:67–77.

    PubMed  Google Scholar 

  12. Weitschies W, Blume H, Mönnikes H. Magnetic marker monitoring: high resolution real-time tracking of oral solid dosage forms in the gastrointestinal tract. Eur J Pharm Biopharm. 2010;74:93–101.

    CAS  PubMed  Google Scholar 

  13. Corá LA, Américo MF, Oliveira RB, Baffa O, Moraes R, Romeiro FG, et al. Disintegration of magnetic tablets in human stomach evaluated by alternate current Biosusceptometry. Eur J Pharm Biopharm. 2003;56:413–20.

    PubMed  Google Scholar 

  14. Corá LA, Andreis U, Romeiro FG, Américo MF, Oliveira RB, Baffa O, et al. Magnetic images of the disintegration process of tablets in the human stomach by AC Biosusceptometry. Phys Med Biol. 2005;50:5523–34.

    PubMed  Google Scholar 

  15. Corá LA, Romeiro FG, Paixão FC, Américo MF, Oliveira RB, Baffa O, et al. Enteric coated magnetic HPMC capsules evaluated in human gastrointestinal tract by AC Biosusceptometry. Pharm Res. 2006;23:1809–16.

    PubMed  Google Scholar 

  16. Corá LA, Fonseca PR, Américo MF, Oliveira RB, Baffa O, Miranda JRA. Influence of compression forces on tablets disintegration by AC Biosusceptometry. Eur J Pharm Biopharm. 2008;69:372–9.

    PubMed  Google Scholar 

  17. Miranda JRA, Corá LA, Américo MF, Romeiro FG. AC Biosusceptometry technique to evaluate the gastrointestinal transit of pellets under influence of prandial state. J Pharm Sci. 2010;99:317–24.

    CAS  PubMed  Google Scholar 

  18. Weitschies W, Wedemeyer RS, Kosch O, Fach K, Nagel S, Söderlind E, et al. Impact of the intragastric location of extended release tablets on food interactions. J Control Release. 2005;108:375–85.

    CAS  PubMed  Google Scholar 

  19. Weitschies W, Friedrich C, Wedemeyer RS, Schmidtmann M, Kosch O, Kinzig M, et al. Bioavailability of amoxicilin and clavulanic acid from extended release tablets depends on intragastric tablet deposition and gastric emptying. Eur J Pharm Biopharm. 2008;70:641–8.

    CAS  PubMed  Google Scholar 

  20. Bergstrand M, Söderlind E, Weitschies W, Karlsson MO. Mechanistic modeling of a magnetic marker monitoring study, linking gastrointestinal tablet transit, in vivo drug release, and pharmacokinetics. Clin Pharmacol Ther. 2009;86(1):77–83.

    CAS  PubMed  Google Scholar 

  21. Custodio J, Wu CY, Benet L. Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption. Adv Drug Deliv Rev. 2008;60:717–33.

    CAS  PubMed  Google Scholar 

  22. Löbenberg R, Amidon GL. Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. Eur J Pharm Biopharm. 2000;50(1):3–12.

    PubMed  Google Scholar 

  23. Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutical drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.

    CAS  PubMed  Google Scholar 

  24. Silva MF, Schramm SG, Kano EK, Koono EEM, Porta V, Serra CHR. Bioequivalence evaluation of single doses of two tramadol formulations: a randomized, open-label, two-period crossover study in healthy brazilian volunteers. Clin Ther. 2010;32:758–65.

    CAS  Google Scholar 

  25. Armando YP, Schramm SG, Silva MF, Kano EK, Koono EEM, Porta V, et al. Bioequivalence assay between orally desintegrating and conventional tablet formulations in healthy volunteers. Int J Pharm. 2009;21:149–53.

    Google Scholar 

  26. Serra CHR, Koono EEM, Kano EK, Schramm SG, Armando YP, Porta V. Bioequivalence and pharmacokinetics of two zidovudine formulations in healthy brazilian volunteers: an open-label, randomized, single-dose, two-way crossover study. Clin Ther. 2008;30(5):902–8.

    CAS  Google Scholar 

  27. Jackson AJ. Generics and bioequivalence. Boca Raton: CRC; 1994.

    Google Scholar 

  28. Hellriegel ET, Bjornsson TD, Hauck WW. Interpatient variability in bioavailaility is related to the extent of absorption: implications for bioavailability and bioequivalence studies. Clin Pharmacol Ther. 1996;60(6):601–7.

    CAS  PubMed  Google Scholar 

  29. Lennernäs H, Abrahamsson B. The use of biopharmaceutic classification of drugs in drug discovery and development: current status and future extension. J Pharm Pharmacol. 2005;57(3):273–85.

    PubMed  Google Scholar 

  30. Shen Q, Li X, Yuan D, Jia W. Enhanced oral bioavailability of daidzein by self-microemulsifying drug delivery system. Chem Pharm Bull. 2010;58(5):639–43.

    CAS  PubMed  Google Scholar 

  31. Chen ML. Lipid excipients and delivery systems for pharmaceutical development: a regulatory perspective. Adv Drug Deliv Rev. 2008;60:768–77.

    CAS  PubMed  Google Scholar 

  32. Karalis V, Macheras P, Peer A, Shah V. Bioavailability and bioequivalence: focus on physiological factors and variability. Pharm Res. 2008;25(8):1956–62.

    CAS  PubMed  Google Scholar 

  33. Martinez MN, Amidon GL. A mechanistic approach to understanding the factors affecting drug absorption: a review of fundamentals. J Clin Pharmacol. 2002;42:620–43.

    CAS  PubMed  Google Scholar 

  34. Shargel L, Yu ABC, Pong SW. Applied biopharmaceutics & pharmacokinetics. New York: MacGraw-Hill; 2005.

    Google Scholar 

  35. Kararli TT. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos. 1995;16:351–80.

    CAS  PubMed  Google Scholar 

  36. Wilson CG. Gastrointestinal transit and drug absorption. In: Dressman JB, Lennernäs H, editors. Oral drug absorption, prediction and assessment. New York: Dekker; 2000. p. 1–10.

    Google Scholar 

  37. Hillgren KM, Kato A, Borchardt RT. In vitro systems for studying intestinal drug absorption. Med Res Rev. 1995;15(2):83–109.

    CAS  PubMed  Google Scholar 

  38. Lennernäs H. Human intestinal permeability. J Pharm Sci. 1997;87(4):403–10.

    Google Scholar 

  39. Fangerholm U, Johansson M, Lennernäs H. Comparison between permeability coefficients in rat and human jejunum. Pharm Res. 1996;13:1336–42.

    Google Scholar 

  40. Fangerholm U, Lindahl A, Lennernäs H. Regional intestinal permeability in rats of compounds with different physicochemical properties and transport mechanisms. J Pharm Pharmacol. 2007;49:687–90.

    Google Scholar 

  41. Salana NN, Eddington ND, Fasano A. Tight junction modulation and its relationship to drug delivery. Adv Drug Del Rev. 2006;58:15–28.

    Google Scholar 

  42. Fangerholm U, Nilsson D, Knutson L, Lennernäs H. Jejunal permeability in humans in vivo and rats in situ: investigation of molecular size selectivity and solvent drag. Acta Physiol Scand. 1999;165:315–24.

    Google Scholar 

  43. Tannergren C, Bergendal A, Lennernäs H, Abrahamsson B. Toward an increased understanding of the barriers to colonic drug absorption in humans: implications for early controlled release candidate assessment. Molecular Pharm. 2009;6:60–73.

    CAS  Google Scholar 

  44. Khanvilkar K, Donovan MD, Flanagan DR. Drug transfer through mucus. Adv Drug Deliv Rev. 2001;48:173–93.

    CAS  PubMed  Google Scholar 

  45. Apparaju SK, Nallani SC. Pharmacokinetics: basics of drug absorption from a biopharmaceutical perspective. In: Chilukuri DM, Sunkara G, Young D, editors. Pharmaceutical product development: in vitro-in vivo correlation. New York: Informa Healthcare; 2007. p. 29–46.

    Google Scholar 

  46. Grassi M, Grassi G, Lapasin R, Colombo I. Understanding drug release and absorption mechanisms: a physical and mathematical approach. Boca Raton: CRC; 2007.

    Google Scholar 

  47. Cao X, Gibbs ST, Fang L, Miller HA, Landowski CP, Shin HC, et al. Why is challenging to predict intestinal drug absorption and oral bioavailability in human using rat model. Pharm Res. 2006;23(8):1675–86.

    CAS  PubMed  Google Scholar 

  48. Dahan A, Miller JM, Hoffman A, Amidon GE, Amidon GL. The solubility-permeability interplay in using cyclodextrins as pharmaceutical solubilizers: mechanistic modeling and application to progesterone. J Pharm Sci. 2010;99(6):2739–49.

    CAS  PubMed  Google Scholar 

  49. Takano M, Yumoto R, Murakami T. Expression and function of efflux drug transporters in the intestine. Pharmacol Ther. 2006;109:137–61.

    CAS  PubMed  Google Scholar 

  50. Benet LZ, Izumi T, Zhang Y, Silverman JA, Wacher VJ. Intestinal MDR transport proteins and P-450 enzymes as barriers to oral drug delivery. J Control Release. 1999;62:25–31.

    CAS  PubMed  Google Scholar 

  51. Legen I, Salobir M, Kerc J. Comparison of different intestinal epithelia as models for absorption enhancement studies. Int J Pharm. 2005;291:183–8.

    CAS  PubMed  Google Scholar 

  52. Gonzales-Mariscal L, Nava P. Tight junctions, from tight intercellular seals to sophisticated protein complexes involved in drug delivery, pathogen interaction and cell proliferation. Adv Drug Deliv Rev. 2005;57:811–4.

    Google Scholar 

  53. Junginger HE, Verhoef JC. Macromolecules as safe penetration enhancers for hydrophilic drugs action? Pharm Sci Technol Today. 1998;1:370–6.

    CAS  Google Scholar 

  54. Kimura T, Higaki K. Gastrointestinal transit and drug absorption. Biol Pharm Bull. 2002;25:149–64.

    CAS  PubMed  Google Scholar 

  55. Rouge N, Buri P, Doelker E. Drug absorption sites in the gastrointestinal tract and dosage forms for site-specific delivery. Int J Pharm. 1996;136:117–39.

    CAS  Google Scholar 

  56. Singh BH. Effects of food on clinical pharmacokinetics. Clin Pharmacokinet. 1999;37:213–55.

    CAS  PubMed  Google Scholar 

  57. Johnson LR. Gastrointestinal physiology. Philadelphia: Mosby, Elsevier; 2007.

    Google Scholar 

  58. Quigley EMM. Gastric and small intestinal motility in health and disease. Gastroenterol Clin North Am. 1996;25(1):113–45.

    CAS  PubMed  Google Scholar 

  59. Rao SSC, Singh S, Mudipalli R. Day-to-day reproducibility of prolonged ambulatory colonic manometry in healthy subjects. Neurogastroenterol Motil. 2010;22:640–8.

    CAS  PubMed  Google Scholar 

  60. Camilleri M. Integrated upper gastrointestinal response to food intake. Gastroenterology. 2006;131:640–58.

    CAS  PubMed  Google Scholar 

  61. Dressman JB, Vertzoni M, Goumas K. Estimating drug solubility in the gastrointestinal tract. Adv Drug Deliv Rev. 2007;59:591–602.

    CAS  PubMed  Google Scholar 

  62. Kortejärvi H, Urtti A, Yliperttula M. Pharmacokinetic simulation of biowaiver criteria: the effects of gastric emptying, dissolution, absorption and elimination rates. Eur J Pharm Sci. 2007;30:155–66.

    PubMed  Google Scholar 

  63. Hellströn PM, Grybäck P, Jacobsson H. The physiology of gastric emptying. Best Pract Res Clin Anaesth. 2006;20:397–407.

    Google Scholar 

  64. Gibaldi M. Biopharmaceutics and clinical pharmacokinetics. Philadelphia: Lea & Febiger; 1991.

    Google Scholar 

  65. Davis SS, Hardy JG, Fara JW. Transit of pharmaceutical dosage forms through the small intestine. Gut. 1986;27:886–92.

    CAS  PubMed  Google Scholar 

  66. Dressman JB, Bass P, Ritschel WA, Friend DR, Rubinstein A, Ziv E. Gastrointestinal parameters that influence oral medications. J Pharm Sci. 1993;82:857–72.

    CAS  PubMed  Google Scholar 

  67. Kuo B, McCallum RW, Koch KL, Sitrin MD, Wo JM, Chey WD, et al. Comparison of gastric emptying of a nondigestible capsule to a radio-labelled meal in healthy and gastroparetic subjects. Aliment Pharmacol Ther. 2008;27:186–96.

    CAS  PubMed  Google Scholar 

  68. Streubel A, Siepmann J, Bodmeier R. Drug delivery to the upper small intestine window using gastroretentive technologies. Curr Opin Pharmacol. 2006;6:501–8.

    CAS  PubMed  Google Scholar 

  69. Davis SS. Formulation strategies for absorption windows. Drug Discov Today. 2005;10(4):249–57.

    CAS  PubMed  Google Scholar 

  70. Chawla G, Gupta P, Koradia V, Bansal AK. A means to address regional variability in intestinal drug absorption. Pharm Technol. 2003;27:50–68.

    Google Scholar 

  71. Coupe AJ, Davis SS, Wilding IR. Variation in gastrointestinal transit of pharmaceutical dosage forms in healthy subjects. Pharm Res. 1991;8:360–4.

    CAS  PubMed  Google Scholar 

  72. Charman WN, Porter CJH, Mithani S, Dressman J. Physicochemical and physiological mechanisms for the effects of food on drug absorption: the role of lipids and pH. J Pharm Sci. 1997;86(3):269–82.

    CAS  PubMed  Google Scholar 

  73. Patel M, Shah T, Amin A. Therapeutic opportunities in colon-specific drug-delivery systems. Crit Rev Ther Drug Carr Syst. 2007;24(2):147–202.

    CAS  Google Scholar 

  74. Shareef MA, Khar RK, Ahuja A, Ahmad FJ, Raghava S. Colonic drug delivery: an updated review. AAPS Pharm Sci. 2003;5:1–25.

    Google Scholar 

  75. Russell TL, Berardi RR, Barnett JL, Dermentzoglou LC, Jarvenpaa KM, Schmaltz SP, et al. Upper gastrointestinal pH in seventy-nine healthy, elderly, north american men and women. Pharm Res. 1993;10(2):187–96.

    CAS  PubMed  Google Scholar 

  76. Ward N. The impact of intestinal failure on oral drug absorption: a review. J Gastrointest Surg. 2010;14:1045–51.

    PubMed  Google Scholar 

  77. Burton PS, Goodwin JT, Vidmar TJ, Amore BM. Predicting drug absorption: how nature made it a difficult problem. J Pharmacol Exp Ther. 2002;303(3):889–95.

    CAS  PubMed  Google Scholar 

  78. Gai MN, Isla A, Andonaeugui MT, Thielemann AM, Seitz C. Evaluation of the effect of three different diets on the bioavailability of two sustained release theophylline matrix tablets. Int J Clin Pharm Ther. 1997;35:565–71.

    CAS  Google Scholar 

  79. Benet LZ. The drug transporter-metabolism alliance: uncovering and defining the interplay. Mol Pharm. 2009;6(6):1631–43.

    CAS  PubMed  Google Scholar 

  80. Varma MVS, Khandavilli S, Ashokraj Y, Jain A, Dhanikula A, Sood A, et al. Biopharmaceutic classification system: a scientific framework for pharmacokinetic optimization in drug research. Curr Drug Metab. 2004;5(5):375–88.

    CAS  PubMed  Google Scholar 

  81. Varum FJO, Merchant HA, Basit AW. Oral modified-release formulations in motion: the relationship between gastrointestinal transit and drug absorption. Int J Pharm. 2010;395:26–36.

    CAS  PubMed  Google Scholar 

  82. Williamson SJ, Kaufman L. Biomagnetism. J Magn Magn Mater. 1981;22:129–201.

    Google Scholar 

  83. Sternickel K, Braginski AI. Biomagnetism using SQUIDs: status and perspectives. Supercond Sci Technol. 2006;19:160–71.

    Google Scholar 

  84. Kwiatkowski W, Tumanski S. The permalloy magnetoresistive sensors: properties and applications. J Phys E Sci Instrum. 1986;19:502–15.

    Google Scholar 

  85. Baffa O, Oliveira RB, Miranda JRA, Troncon LEA. Analysis and development of an AC Biosusceptometer for orocaecal transit time measurements. Med Biol Eng Comput. 1995;33:353–7.

    CAS  PubMed  Google Scholar 

  86. Pizzella V, Della Penna S, Del Gratta C, Romani GL. SQUID systems for biomagnetic imaging. Supercond Sci Technol. 2001;14:79–114.

    Google Scholar 

  87. Kleiner R, Koelle D, Ludwig F, Clarke J. Superconducting quantum interference devices: state of the art and applications. Proc IEEE. 2004;92(10):1534–48.

    CAS  Google Scholar 

  88. Swithenby SJ. SQUIDS and their applications in the measurement of weak magnetic fields. J Phys E Sci Instrum. 1980;13:801–13.

    Google Scholar 

  89. Mapps DJ. Magnetoresistive sensors. Sens Actuator. 1997;59:9–19.

    Google Scholar 

  90. Weitschies W, Grützmann R, Hartmann V, Breitkreutz J. Investigation of the disintegration of magnetically marked tablets. Eur J Pharm Biopharm. 2001;52:221–6.

    CAS  PubMed  Google Scholar 

  91. Andrä W, Danan H, Eitner K, Hocke M, Kramer HH, Parusel H, et al. A novel magnetic method for examination of bowel motility. Med Phys. 2005;32(9):2942–4.

    PubMed  Google Scholar 

  92. Américo MF, Oliveira RB, Corá LA, Marques RG, Romeiro FG, Andreis U, et al. The ACB technique: a biomagnetic tool for monitoring gastrointestinal contraction directly from smooth muscle in dogs. Physiol Meas. 2010;31:159–69.

    PubMed  Google Scholar 

  93. Américo MF, Miranda JR, Corá LA, Romeiro FG. Electrical and mechanical effects of hyoscine butylbromide on the human stomach: a non-invasive approach. Physiol Meas. 2009;30:363–70.

    PubMed  Google Scholar 

  94. Bahadur D, Giri J. Biomaterials and magnetism. Sadhana. 2003;28:639–56.

    CAS  Google Scholar 

  95. Kushchevskaya NF. Use of ferromagnetic particles in medicine. Powder Metall Met Ceram. 1997;36:668–72.

    CAS  Google Scholar 

  96. Goodman K, Hodges LA, Band J, Stevens HNE, Weitschies W, Wilson CG. Assessing gastrointestinal motility and disintegration profiles of magnetic tablets by a novel magnetic imaging device and gamma scintigraphy. Eur J Pharm Biopharm. 2010;74:84–92.

    CAS  PubMed  Google Scholar 

  97. Weitschies W, Karaus M, Cordini D, Trahms L, Breitkreutz J, Semmler W. Magnetic marker monitoring of disintegrating capsules. Eur J Pharm Sci. 2001;13:411–6.

    CAS  PubMed  Google Scholar 

  98. Corá LA, Romeiro FG, Americo MF, Oliveira RB, Baffa O, Stelzer M, et al. Gastrointestinal transit and disintegration of enteric coated magnetic tablets assessed by AC Biosusceptometry. Eur J Pharm Sci. 2006;27:1–8.

    PubMed  Google Scholar 

  99. Oliveira GF, Ferrari PC, Carvalho LQ, Evangelista RC. Chitosan-pectin multiparticulate systems associated with enteric polymers for colonic drug delivery. Carb Pol. 2010. in press.

  100. Osmanoglou E, Van der Voort IR, Fach K, Kosch O, Hartmann V, Strenzke A, et al. Oesophageal transport of solid dosage forms depends on body position, swallowing volume and pharyngeal propulsion velocity. Neurogastroenterol Motil. 2004;16:547–56.

    CAS  PubMed  Google Scholar 

  101. Li CH, Martini LG, Ford JL, Roberts M. The use of hypromellose in oral drug delivery. J Pharm Pharmacol. 2005;57:533–46.

    CAS  PubMed  Google Scholar 

  102. Levina M, Rajabi-Siahboomi AR. The influence of excipients on drug release from hydroxypropyl methylcellulose matrices. J Pharm Sci. 2004;93:2746–54.

    CAS  PubMed  Google Scholar 

  103. Bodmeier R. Tableting of coated pellets. Eur J Pharm Biopharm. 1997;43:1–8.

    CAS  Google Scholar 

  104. Gandhi R, Chaman LK, Panchagnula R. Extrusion and spheronization in the development of oral controlled-release dosage forms. Pharm Sci Technol Today. 1999;2:160–70.

    CAS  Google Scholar 

  105. Krämer J, Blume H. Biopharmaceutical aspects of multiparticulates. In: Multiparticle oral drug delivery. New York: Marcel Dekker. 1994.

  106. Asghar LFA, Chandran S. Multiparticulate formulation approach to colon specific drug delivery: current perspectives. J Pharm Pharm Sci. 2006;9:327–38.

    CAS  PubMed  Google Scholar 

  107. Hebbard GS, Sun WM, Bochner F, Horowitz M. Pharmacokinetic considerations in gastrointestinal motor disorders. Clin Pharmacokinet. 1995;28:41–66.

    CAS  PubMed  Google Scholar 

  108. Groop LC, DeFronzo RA, Luzi L, Melander A. Hyperglycaemia and absorption of sulphonylurea drugs. Lancet. 1989;334:129–30.

    Google Scholar 

  109. Horowitz M, O'Donovan D, Jones KL, Feinle C, Rayner CK, Samsom M. Gastric emptying in diabetes: clinical significance and treatment. Diabet Med. 2002;19:177–94.

    CAS  PubMed  Google Scholar 

  110. Dieterlen P, Cassereau H, Lestradet H. Permanent malabsorption of rifampin in a diabetic with celiac disease. Arch Fr Pediatr. 1986;43:421–2.

    CAS  PubMed  Google Scholar 

  111. Peloquin CA, MacPhee AA, Berning SE. Malabsorption of antimycobacterial medications. N Engl J Med. 1993;329:1122–3.

    CAS  PubMed  Google Scholar 

  112. Awouters F, Megens A, Verlinden M, Schuurkes J, Niemegeers C, Jansen J. Loperamide, survey of studies on mechanism of its anti-diarrhoeal activity. Digest Dis Sci. 1993;38:977–95.

    CAS  PubMed  Google Scholar 

  113. Barone JA. Domperidone: a peripherally acting dopamine 2-receptor antagonist. Ann Pharmacother. 1999;33:429–40.

    CAS  PubMed  Google Scholar 

  114. Tonini M, Cipollina L, Poluzzi E, Crema F, Corazza GR, De Ponti F. Review article: clinical implications of enteric and central D2 receptor blockade by antidopaminergic gastrointestinal prokinetics. Aliment Pharmacol Ther. 2004;19:379–90.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors would are grateful to Brazilian Agencies CNPq and FAPESP for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Ricardo Aruda Miranda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corá, L.A., Américo, M.F., Oliveira, R.B. et al. Biomagnetic Methods: Technologies Applied to Pharmaceutical Research. Pharm Res 28, 438–455 (2011). https://doi.org/10.1007/s11095-010-0285-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0285-5

KEY WORDS

Navigation