Skip to main content
Log in

Measurement and Modeling of Diffusion Kinetics of a Lipophilic Molecule Across Rabbit Cornea

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop a kinetic model for representing the diffusion and partitioning of Rhodamine B (RhB), a fluorescent lipophilic molecule, across the cornea for gaining insights into pharmacokinetics of topical drugs to the eye.

Methods

Rabbit corneas mounted underneath a custom-built scanning microfluorometer were perfused with Ringers on both sides of the tissue. After a step change in RhB on the tear side, transients of trans-corneal fluorescence of RhB were measured at a depth resolution ∼ 8 μm.

Results

RhB distribution exhibited discontinuities at the interface between epithelium and stroma, and between stroma and endothelium. In each of the layers, fluorescence was non-uniform. Fluorescence was elevated in the epithelium and endothelium relative to the stroma. Modeling of RhB transport by diffusion in each layer and stipulation of partitioning of RhB at the cellular interfaces were required to account for trans-corneal penetration kinetics of RhB. The model parameters, estimated using the unsteady state trans-corneal RhB profiles, were found to be sensitive, and the model predicted the experimental profiles accurately.

Conclusions

Conventional pharmacokinetic models that depict cornea as a single compartment do not predict the depth-dependent kinetics of RhB penetration. The proposed model incorporates realistic transport mechanisms and thereby highlights the influence of physicochemical properties of drugs on trans-corneal kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Maurice DM, Mishima S, editors. Ocular pharmacokinetics. Berlin: Springer-Verlag; 1984. p. 19–116.

    Google Scholar 

  2. Bourlais CL, Acar L, Zia H, Sado PA, Needham T, Leverge R. Ophthalmic drug delivery systems–recent advances. Prog Retin Eye Res. 1998;17:33–58.

    Article  CAS  PubMed  Google Scholar 

  3. Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev. 2006;58:1131–5.

    Article  CAS  PubMed  Google Scholar 

  4. Maurice DM. Prolonged-action drops. Int Ophthalmol Clin. 1993;33:81–91.

    Article  CAS  PubMed  Google Scholar 

  5. Gaudana R, Jwala J, Boddu SH, Mitra AK. Recent perspectives in ocular drug delivery. Pharm Res. 2009;26:1197–216.

    Article  CAS  PubMed  Google Scholar 

  6. Srinivas SP. In situ measurement of fluorescein release by collagen shields in human eyes. Curr Eye Res. 1994;13:281–8.

    Article  CAS  PubMed  Google Scholar 

  7. Wilson CG. Topical drug delivery in the eye. Exp Eye Res. 2004;78:737–43.

    Article  CAS  PubMed  Google Scholar 

  8. Wang Y, Chen M, Wolosin JM. ZO-1 in corneal epithelium; stratal distribution and synthesis induction by outer cell removal. Exp Eye Res. 1993;57:283–92.

    Article  CAS  PubMed  Google Scholar 

  9. Araie M, Maurice D. The rate of diffusion of fluorophores through the corneal epithelium and stroma. Exp Eye Res. 1987;44:73–87.

    Article  CAS  PubMed  Google Scholar 

  10. McLaren JW, Ziai N, Brubaker RF. A simple three-compartment model of anterior segment kinetics. Exp Eye Res. 1993;56:355–66.

    Article  CAS  PubMed  Google Scholar 

  11. Amrite AC, Edelhauser HF, Kompella UB. Modeling of corneal and retinal pharmacokinetics after periocular drug administration. Invest Ophthalmol Vis Sci. 2008;49:320–32.

    Article  PubMed  Google Scholar 

  12. Friedrich SW, Cheng YL, Saville BA. Theoretical corneal permeation model for ionizable drugs. J Ocul Pharmacol. 1993;9:229–49.

    Article  CAS  PubMed  Google Scholar 

  13. Ranta VP, Laavola M, Toropainen E, Vellonen KS, Talvitie A, Urtti A. Ocular pharmacokinetic modeling using corneal absorption and desorption rates from in vitro permeation experiments with cultured corneal epithelial cells. Pharm Res. 2003;20:1409–16.

    Article  CAS  PubMed  Google Scholar 

  14. Avtar R, Tandon D. Modeling the drug transport in the anterior segment of the eye. Eur J Pharm Sci. 2008;35:175–82.

    Article  CAS  PubMed  Google Scholar 

  15. Yamamura K, Sasaki H, Nakashima M, et al. Characterization of ocular pharmacokinetics of beta-blockers using a diffusion model after instillation. Pharm Res. 1999;16:1596–601.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang W, Prausnitz MR, Edwards A. Model of transient drug diffusion across cornea. J Control Release. 2004;99:241–58.

    Article  CAS  PubMed  Google Scholar 

  17. Guss R, Johnson F, Maurice D. Rhodamine B as a test molecule in intraocular dynamics. Invest Ophthalmol Vis Sci. 1984;25:758–62.

    CAS  PubMed  Google Scholar 

  18. Srinivas SP, Maurice DM. A microfluorometer for measuring diffusion of fluorophores across the cornea. IEEE Trans Biomed Eng. 1992;39:1283–91.

    Article  CAS  PubMed  Google Scholar 

  19. Maurice DM, Srinivas SP. Fluorometric measurement of light absorption by the rabbit cornea. Exp Eye Res. 1994;58:409–13.

    Article  CAS  PubMed  Google Scholar 

  20. Doughty MJ, Maurice D. Bicarbonate sensitivity of rabbit corneal endothelium fluid pump in vitro. Invest Ophthalmol Vis Sci. 1988;29:216–23.

    CAS  PubMed  Google Scholar 

  21. Maurice DM, Srinivas SP. Use of fluorometry in assessing the efficacy of a cation-sensitive gel as an ophthalmic vehicle: comparison with scintigraphy. J Pharm Sci. 1992;81:615–9.

    Article  CAS  PubMed  Google Scholar 

  22. Srinivas SP, Maurice DM. Transport of rhodamine B across rabbit cornea. Invest Ophthalmol Vis Sci Suppl; 1991:1295.

  23. Komai Y, Ushiki T. The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest Ophthalmol Vis Sci. 1991;32:2244–58.

    CAS  PubMed  Google Scholar 

  24. Wallace DG, Rosenblatt J. Collagen gel systems for sustained delivery and tissue engineering. Adv Drug Deliv Rev. 2003;55:1631–49.

    Article  CAS  PubMed  Google Scholar 

  25. Beck JV, Arnold KJ. Parameter Estimation in Engineering and Science. New York: Wiley; 1977.

    Google Scholar 

  26. Mitra AK (ed) Ophthalmic drug delivery systems: Marcel Dekker, Inc.; 2003.

  27. Tsonis PA. Animal models in Eye Research: Academic Press; 2008.

  28. Reitsamer HA, Bogner B, Tockner B, Kiel JW. Effects of dorzolamide on choroidal blood flow, ciliary blood flow, and aqueous production in rabbits. Invest Ophthalmol Vis Sci. 2009;50:2301–7.

    Article  PubMed  Google Scholar 

  29. Reitsamer HA, Kiel JW. Relationship between ciliary blood flow and aqueous production in rabbits. Invest Ophthalmol Vis Sci. 2003;44:3967–71.

    Article  PubMed  Google Scholar 

  30. Maurice DM. Factors influencing the penetration of topically applied drugs. Int Ophthalmol Clin. 1980;20:21–32.

    Article  CAS  PubMed  Google Scholar 

  31. Yu B, Hean Kim K, So PT, Blankschtein D, Langer R. Topographic heterogeneity in transdermal transport revealed by high-speed two-photon microscopy: determination of representative skin sample sizes. J Invest Dermatol. 2002;118:1085–8.

    Article  CAS  PubMed  Google Scholar 

  32. Yu B, Dong CY, So PT, Blankschtein D, Langer R. In vitro visualization and quantification of oleic acid induced changes in transdermal transport using two-photon fluorescence microscopy. J Invest Dermatol. 2001;117:16–25.

    Article  CAS  PubMed  Google Scholar 

  33. Toropainen E, Ranta VP, Talvitie A, Suhonen P, Urtti A. Culture model of human corneal epithelium for prediction of ocular drug absorption. Invest Ophthalmol Vis Sci. 2001;42:2942–8.

    CAS  PubMed  Google Scholar 

  34. Schoenwald RD, Deshpande GS, Rethwisch DG, Barfknecht CF. Penetration into the anterior chamber via the conjunctival/scleral pathway. J Ocul Pharmacol Ther. 1997;13:41–59.

    Article  CAS  PubMed  Google Scholar 

  35. Prausnitz MR, Noonan JS. Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J Pharm Sci. 1998;87:1479–88.

    Article  CAS  PubMed  Google Scholar 

  36. Srinivas SP, Bonanno JA, Lariviere E, Jans D, Van Driessche W. Measurement of rapid changes in cell volume by forward light scattering. Pflugers Arch. 2003;447:97–108.

    Article  CAS  PubMed  Google Scholar 

  37. Bird RB, Stewart WE, Lightfoot EN. Transport Phenomena: John Wiley & Sons, Inc.; 2002.

  38. Kim J, Chauhan A. Dexamethasone transport and ocular delivery from poly(hydroxyethyl methacrylate) gels. Int J Pharm. 2008;353:205–22.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by NIH grant R21-EY019119 and Faculty Research Grant, VP of Research, IU Bloomington, IN (SPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangly P. Srinivas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, C., Chauhan, A., Mutharasan, R. et al. Measurement and Modeling of Diffusion Kinetics of a Lipophilic Molecule Across Rabbit Cornea. Pharm Res 27, 699–711 (2010). https://doi.org/10.1007/s11095-010-0066-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0066-1

KEY WORDS

Navigation