Skip to main content

Advertisement

Log in

Fabrication of a Novel Core-Shell Gene Delivery System Based on a Brush-Like Polycation of α, β–Poly (L-Aspartate-Graft-PEI)

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

A novel core-shell gene delivery system was fabricated in order to improve its gene transfection efficiency, particularly in the presence of serum.

Materials and Methods

α, β–poly (L-aspartate-graft-PEI) (PAE) was simply synthesized by ring-opening reaction of poly (L-succinimide) with low molecular weight (LMW) linear polyethylenimine (PEI, Mn = 423). PAE/DNA nanoparticles were characterized. Condensation and protection ability of plasmid by PAE were confirmed by agarose gel electrophoresis assay. Cytotoxicity of the polymer and polymer/DNA nanoparticles were measured by MTS assay. Gene transfection efficiencies were evaluated both in vitro and in vivo.

Results

Core-shell nanoparticles assembled between DNA and PAE showed positive zeta potential, narrow size distribution, and spherical compact shapes with size below 250 nm when N/P ratio is above 10. Cytotoxicity of PAE was rather lower than that of PEI 25K, while the most efficient gene transfection and serum resistant ability of PAE/DNA complexes were higher than that of PEI 25K. Bafilomycin A1 treatment suggested “proton sponge” mechanism of PAE-mediated gene transfection. PAE/pEGFP-N2 nanoparticles also showed good gene expression in vivo and were dominantly distributed in kidney, liver, spleen and lung after intravenous administration.

Conclusions

The results demonstrated the potential use of PAE as an effective gene carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

DCC:

N, N′-dicyclohexylcarbodiimide

DMEM:

Dulbecco’s modified Eagle’s medium

DMF:

N, N-dimethylformamide

DMSO:

dimethyl sulfoxide

EGFP:

enhanced green fluorescent protein

FBS:

fetal bovine serum

HGF:

(hepatocyte growth factor)

LMW:

low molecular weight

MPS:

mononuclear phagocytic system

PAE:

α, β–poly (L-aspartate-graft-PEI)

PEI:

polyethylenimine

PSI:

poly (L-succinimide)

RLUs:

Relative light units

References

  1. Nabel GJ. Genetic, cellular and immune approaches to disease therapy: past and future. Nat Med. 2004;10:135–41.

    Article  PubMed  CAS  Google Scholar 

  2. El-Aneed A. An overview of current delivery systems in cancer gene therapy. J Control Release. 2004;94:1–14.

    Article  PubMed  CAS  Google Scholar 

  3. Dykxhoorn DM, Palliser D, Lieberman J. The silent treatment: siRNAs as small molecule drugs. Gene Therapy. 2006;13:541–52.

    Article  PubMed  CAS  Google Scholar 

  4. Gene therapy clinical trials worldwide provided by the Journal of Gene Medicine, http://www.wiley.co.uk/genmed/clinical/.

  5. Crystal RG. Transfer of genes to humans: early lessons and obstacles to success. Science. 1995;270:404–10.

    Article  PubMed  CAS  Google Scholar 

  6. Tripathy SK, Black HB, Goldwasser E, Leiden JM. Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus. Nat Med. 1996;2:545–50.

    Article  PubMed  CAS  Google Scholar 

  7. Luo D, Saltzman WM. Synthetic DNA delivery systems. Nat Biotechnol. 2000;18:33–7.

    Article  PubMed  CAS  Google Scholar 

  8. Han S, Mahato RI, Sung YK, Kim SW. Development of biomaterials for gene therapy. Mol Ther. 2000;2:302–17.

    Article  PubMed  CAS  Google Scholar 

  9. Lungwitz U, Breunig M, Blunk T, Göpferich A. Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm. 2005;60:247–66.

    Article  PubMed  CAS  Google Scholar 

  10. Godbey WT, Wu KK, Mikos AG. Poly (ethylenimine) and its role in gene delivery. J Controlled Release. 1999;60:149–60.

    Article  CAS  Google Scholar 

  11. Wang J, Zhang PC, Lu HF, Ma N, Wang S, Mao HQ, et al. New polyphosphoramidate with a spermidine side chain as a gene carrier. J Controlled Release. 2002;83:157–68.

    Article  CAS  Google Scholar 

  12. Godbey WT, Wu KK, Mikos AG. Size matters: molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle. J Biomed Mater Res. 1999;45:268–75.

    Article  PubMed  CAS  Google Scholar 

  13. Fischer D, Bieber T, Li Y, Elsässer H, Kissel T. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res. 1999;16:1273–9.

    Article  PubMed  CAS  Google Scholar 

  14. Ahn CH, Chae SY, Bae YH, Kim SW. Biodegradable poly(ethylenimine) for plasmid DNA delivery. J Control Release. 2002;80:273–82.

    Article  PubMed  CAS  Google Scholar 

  15. Xiong MP, Forrest M, Ton G, Zhao A, Davies NM, Kwon GS. Poly (aspartate-g-PEI800), a polyethylenimine analogue of low toxicity and high transfection efficiency for gene delivery. Biomaterials. 2007;28:4889–900.

    Article  PubMed  CAS  Google Scholar 

  16. Park MR, Han KO, Han IK, Cho MH, Nah JW, Choi YJ, et al. Degradable polyethylenimine-alt-poly(ethylene glycol) copolymers as novel gene carriers. J Controlled Release. 2005;105:367–80.

    Article  CAS  Google Scholar 

  17. Arote R, Kim TH, Kim YK, Hwang SK, Jiang HL, Song HH, et al. A biodegradable poly (ester amine) based on polycaprolactone and polyethylenimine as a gene carrier. Biomaterials. 2007;28:735–44.

    Article  PubMed  CAS  Google Scholar 

  18. Jiang HL, Kwon JT, Kim YK, Kim EM, Arote R, Jeong HJ, et al. Galactosylated chitosan-graft-polyethylenimine as a gene carrier for hepatocyte targeting. Gene Therapy. 2007;14:1389–98.

    Article  PubMed  CAS  Google Scholar 

  19. Seglen PO. Preparation of isolated rat liver cells. Meth Cell Biol. 1976;13:29–83.

    Article  CAS  Google Scholar 

  20. Neri P, Antoni G, Benvenuti F, Cocola F, Gazzei G. Synthesis of α, β–Poly[(2-hydroxyethyl)-DL-aspartamide], a new plasma expander. J Med Chem. 1973;16:893–7.

    Article  PubMed  CAS  Google Scholar 

  21. Gebhart CL, Sriadibhatla S, Vinogradov S, Lemieux P, Alakhov V, Kabanov AV. Design and formulation of polyplexes based on pluronic–polyethylenimine conjugates for gene transfer. Bioconjug Chem. 2002;13:937–44.

    Article  PubMed  CAS  Google Scholar 

  22. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenano MD, et al. Measurement of protein using bicinchonic acid. Anal Biochem. 1985;150:76–85.

    Article  PubMed  CAS  Google Scholar 

  23. Kim EM, Jeong HJ, Kim SL, Sohn MH, Nah JW, Bom HS, et al. Asialoglycoprotein-receptor-targeted hepatocyte imaging using 99mTc galactosylated chitosan. Nucl Med Biol. 2006;33:529–34.

    Article  PubMed  CAS  Google Scholar 

  24. Tomida M, Nakato T. Convenient synthesis of high molecular weight poly (succinimide) by acid-catalysed polycondensation of L-aspartic acid. Polymer. 1997;38:4733–6.

    Article  CAS  Google Scholar 

  25. Kunath K, Harpe A, Fischer D, Petersen H, Bickel U, Voigt K, et al. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J Controlled Release. 2003;89:113–25.

    Article  CAS  Google Scholar 

  26. Guy J, Drabek D, Antoniou M. Delivery of DNA into mammalian cells by receptor-mediated endocytosis and gene therapy. Mol Biotechnol. 1995;3:237–48.

    PubMed  CAS  Google Scholar 

  27. Kabanov AV, Kabanov VA. DNA complexes with polycations for the delivery of genetic material into cells. Bioconjugate Chem. 1995;6:7–20.

    Article  CAS  Google Scholar 

  28. Mislick KA, Baldeschwieler JD. Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc Natl Acad Sci USA. 1996;93:12349–54.

    Article  PubMed  CAS  Google Scholar 

  29. Fischer D, Bieber T, Li Y, Elsasser HP, Kissel T. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res. 1999;16:1273–9.

    Article  PubMed  CAS  Google Scholar 

  30. Ryser HJ. A membrane effect of basic polymers dependent on molecular size. Nature. 1967;215:934–6.

    Article  PubMed  CAS  Google Scholar 

  31. Goldman CK, Soroceanu L, Smith N, Gillespie GY, Shaw W, Burgess S, et al. In vitro and in vivo gene delivery mediated by a synthetic polycationic amino polymer. Nat Biotech. 1997;15:462–6.

    Article  CAS  Google Scholar 

  32. Fischer D, Bieber T, Li Y, Elsässer HP, Kissel T. A novel nonviral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm. Res. 1999;16:1273–9.

    Article  PubMed  CAS  Google Scholar 

  33. Kichler A, Leborgne C, Coeytaux E, Danos O. Polyethylenimine-mediated gene delivery: a mechanistic study. J Gene Med. 2001;3:135–44.

    Article  PubMed  CAS  Google Scholar 

  34. Tang CK, Lodding J, Minigo G, Pouniotis DS, Plebanski M, Scholzen A, et al. Mannan-mediated gene delivery for cancer immunotherapy. Immunology. 2007;120:325–35.

    Article  PubMed  CAS  Google Scholar 

  35. Patil SD, Rhodes DG, Burgess DJ. DNA-based therapeutics and DNA delivery systems: a comprehensive review. AAPS J. 2005;7:E61–77.

    Article  PubMed  CAS  Google Scholar 

  36. Kunath K, von Anke H, Holger P, Dagmar F, Karlheinz V, Thomas K, et al. The Structure of PEG-Modified Poly(Ethylene Imines) Influences Biodistribution and pharmacokinetics of their complexes with NF- κB decoy in mice. Pharm Res. 2002;19:810–7.

    Article  PubMed  CAS  Google Scholar 

  37. Verbaan FJ, Oussoren C, Snel CJ, Crommelin DJA, Hennink WE, Storm G. Steric stabilization of poly(2-(dimethylamino)ethyl methacrylate)-based polyplexes mediates prolonged circulation and tumor targeting in mice. J Gene Med. 2004;6:64–75.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Korea Science and Engineering Foundation (ROI-2005-000-10087-0) and Natural Science Foundation of China (No. 20504010). We also acknowledge the National Instrumentation Center for Environmental Management (NICEM) for permission to take NMR measurements. J. H. Yu was supported by KOSEF as a post-doctor under Korea-China Young Scientist Exchange Program, and J.S. Quan was supported by BK21 program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Myung-Haing Cho or Chong-Su Cho.

Additional information

J.-H. Yu and J.-S. Quan have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, JH., Quan, JS., Kwon, JT. et al. Fabrication of a Novel Core-Shell Gene Delivery System Based on a Brush-Like Polycation of α, β–Poly (L-Aspartate-Graft-PEI). Pharm Res 26, 2152–2163 (2009). https://doi.org/10.1007/s11095-009-9928-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9928-9

KEY WORDS

Navigation