Skip to main content

Advertisement

Log in

Dimethylamino Acid Esters as Biodegradable and Reversible Transdermal Permeation Enhancers: Effects of Linking Chain Length, Chirality and Polyfluorination

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Series of N,N-dimethylamino acid esters was synthesized to study their transdermal permeation-enhancing potency, biodegradability and reversibility of action. Effects of chirality, linking chain length and polyfluorination were investigated.

Materials and Methods

In vitro activities were evaluated using porcine skin and four model drugs—theophylline, hydrocortisone, adefovir and indomethacin. Biodegradability was determined using porcine esterase, reversibility was measured using electrical resistance.

Results

No differences in activity were found between (R), (S) and racemic dodecyl 2-(dimethylamino)propanoate (DDAIP). Substitution of hydrocarbon tail by fluorocarbon one resulted in loss of activity. Replacement of branched linking chain between nitrogen and ester of DDAIP by linear one markedly improved penetration-enhancing activity with optimum in 4–6C acid derivatives. Dodecyl 6-(dimethylamino)hexanoate (DDAK) was more potent than clinically used skin absorption enhancer DDAIP for theophylline (enhancement ratio of DDAK and DDAIP was 17.3 and 5.9, respectively), hydrocortisone (43.2 and 11.5) and adefovir (13.6 and 2.8), while DDAIP was better enhancer for indomethacin (8.7 and 22.8). DDAK was rapidly metabolized by porcine esterase, and displayed low acute toxicity. Electrical resistance of DDAK-treated skin barrier promptly recovered to control values.

Conclusion

DDAK, highly effective, broad-spectrum, biodegradable and reversible transdermal permeation enhancer, is promising candidate for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. R. Prausnitz, S. Mitragotri, and R. Langer. Current status and future potential of transdermal drug delivery. Nat. Rev. Drug Discov. 3:115–124 (2004). doi:10.1038/nrd1304.

    Article  PubMed  CAS  Google Scholar 

  2. B. J. Thomas, and B. C. Finnin. The transdermal revolution. Drug Discov. Today. 9:697–703 (2004). doi:10.1016/S1359-6446(04)03180-0.

    Article  PubMed  CAS  Google Scholar 

  3. H. Y. Thong, H. Zhai, and H. I. Maibach. Percutaneous penetration enhancers: an overview. Skin Pharmacol. Physiol. 20:272–282 (2007). doi:10.1159/000107575.

    Article  PubMed  Google Scholar 

  4. A. C. Williams, and B. W. Barry. Penetration enhancers. Adv. Drug Deliv. Rev. 56:603–618 (2004). doi:10.1016/j.addr.2003.10.025.

    Article  PubMed  CAS  Google Scholar 

  5. K. Vavrova, J. Zbytovska, and A. Hrabalek. Amphiphilic transdermal permeation enhancers: structure-activity relationships. Curr. Med. Chem. 12:2273–2291 (2005). doi:10.2174/0929867054864822.

    Article  PubMed  CAS  Google Scholar 

  6. S. Buyuktimkin, N. Buyuktimkin, and J. H. Rytting. Synthesis and enhancing effect of dodecyl 2-(N,N-dimethylamino)propionate on the transepidermal delivery of indomethacin, clonidine, and hydrocortisone. Pharm. Res. 10:1632–1637 (1993). doi:10.1023/A:1018980905312.

    Article  PubMed  CAS  Google Scholar 

  7. T. M. Suhonen, L. Pirskanen, M. Raisanen, K. Kosonen, J. H. Rytting, P. Paronen, and A. Urtti. Transepidermal delivery of beta-blocking agents: Evaluation of enhancer effects using stratum corneum lipid liposomes. J. Control. Release. 43:251–259 (1997). doi:10.1016/S0168-3659(96)01495-2.

    Article  Google Scholar 

  8. A. M. Wolka, J. H. Rytting, B. L. Reed, and B. C. Finnin. The interaction of the penetration enhancer DDAIP with a phospholipid model membrane. Int. J. Pharm. 271:5–10 (2004). doi:10.1016/j.ijpharm.2003.09.018.

    Article  PubMed  CAS  Google Scholar 

  9. T. M. Turunen, A. Urtti, P. Paronen, K. L. Audus, and J. H. Rytting. Effect of some penetration enhancers on epithelial membrane lipid domains: evidence from fluorescence spectroscopy studies. Pharm. Res. 11:288–294 (1994). doi:10.1023/A:1018919811227.

    Article  PubMed  CAS  Google Scholar 

  10. N. Buyuktimkin, S. Buyuktimkin, and J. H. Rytting. Alkyl N,N-Disubstituted-Amino acetates. In E. W. Smith, and H. I. Maibach (eds.), Percutaneous Penetration Enhancers, CRC, New York, 1995, pp. 91–102.

    Google Scholar 

  11. S. Buyuktimkin, N. Buyuktimkin, and J. H. Rytting. Interaction of indomethacin with a new penetration enhancer, dodecyl 2-(N,N-dimethylamino)propionate (DDAIP): Its effect on transdermal delivery. Int. J. Pharm. 127:245–253 (1996). doi:10.1016/0378–5173(96)80691-0.

    Article  CAS  Google Scholar 

  12. W. Pfister, M. Li, and D. Frank. Development of the novel permeation enhancers dodecyl-2-N,N-dimethylaminopropionate (DDAIP) and HCl salt: physiochemical properties, preclinical safety and in vitro permeation enhancement. AAPS J. 8:(2006).

  13. E. Touitou, B. Godin, T. R. Kommuru, M. I. Afouna, and I. K. Reddy. Transport of chiral molecules across the skin. In I. K. Reddy, and R. Mehvar (eds.), Chirality in Drug Design and Development, Marcel Dekker, New York, 2004, pp. 67–99.

    Google Scholar 

  14. K. Vavrova, A. Hrabalek, and P. Dolezal. Enhancement effects of (R) and (S) enantiomers and the racemate of a model enhancer on permeation of theophylline through human skin. Arch. Dermatol. Res. 294:383–385 (2002).

    PubMed  CAS  Google Scholar 

  15. N. Kanikkannan, K. Kandimalla, S. S. Lamba, and M. Singh. Structure–activity relationship of chemical penetration enhancers in transdermal drug delivery. Curr. Med. Chem. 7:593–608 (2000).

    PubMed  CAS  Google Scholar 

  16. K. Vavrova, A. Hrabalek, P. Dolezal, T. Holas, and J. Klimentova. Biodegradable derivatives of tranexamic acid as transdermal permeation enhancers. J. Control. Release. 104:41–49 (2005). doi:10.1016/j.jconrel.2005.01.002.

    Article  PubMed  CAS  Google Scholar 

  17. P. Vierling, C. Santaella, and J. Greiner. Highly fluorinated amphiphiles as drug and gene carrier and delivery systems. J. Fluorine Chem. 107:337–354 (2001). doi:10.1016/S0022-1139(00)00378-X.

    Article  CAS  Google Scholar 

  18. K. Wang, G. Karlsson, M. Almgren, and T. Asakawa. Aggregation behavior of cationic fluorosurfactants in water and salt solutions. A cryoTEM survey. J. Phys. Chem. B. 103:9237–9246 (1999). doi:10.1021/jp990821u.

    Article  CAS  Google Scholar 

  19. J. G. Riess, and M. P. Krafft. Advanced fluorocarbon-based systems for oxygen and drug delivery, and diagnosis. Artif. Cells Blood Substit. Immobil. Biotechnol. 25:43–52 (1997).

    Article  PubMed  CAS  Google Scholar 

  20. A. Hrabalek, P. Dolezal, O. Farsa, Z. Sklubalova, and J. Kunes. Esters of 6-dimethylaminohexanoic acid as skin penetration enhancers. Pharmazie. 55:759–761 (2000).

    PubMed  CAS  Google Scholar 

  21. K. Vavrova, K. Lorencova, J. Klimentova, J. Novotny, A. N. Holy, and A. Hrabalek. Transdermal and dermal delivery of adefovir: effects of pH and permeation enhancers. Eur. J. Pharm. Biopharm. 69:597–604 (2008). doi:10.1016/j.ejpb.2007.12.005.

    Article  PubMed  CAS  Google Scholar 

  22. K. Vavrová, K. Lorencová, J. Novotný, A. Holý, and A. Hrabálek. Permeation enhancer dodecyl 6-(dimethylamino)hexanoate increases transdermal and topical delivery of adefovir; influence of pH, ion-pairing and skin species. Eur. J. Pharm. Biopharm. 70:901–907 (2008), doi:10.1016/j.ejpb.2008.07.002

  23. A. Hrabalek, P. Dolezal, K. Vavrova, J. Zbytovska, T. Holas, J. Klimentova, and J. Novotny. Synthesis and enhancing effect of transkarbam 12 on the transdermal delivery of theophylline, clotrimazole, flobufen, and griseofulvin. Pharm. Res. 23:912–919 (2006). doi:10.1007/s11095-006-9782-y.

    Article  PubMed  CAS  Google Scholar 

  24. A. F. Abdel-Magid, K. G. Carson, B. D. Harris, C. A. Maryanoff, and R. D. Shah. Reductive amination of aldehydes and ketones with sodium triacetoxyborohydride. Studies on direct and indirect reductive amination procedures. J. Org. Chem. 61:3849–3862 (1996). doi:10.1021/jo960057x.

    Article  PubMed  CAS  Google Scholar 

  25. C. Herkenne, A. Naik, Y. N. Kalia, J. Hadgraft, and R. H. Guy. Pig ear skin ex vivo as a model for in vivo dermatopharmacokinetic studies in man. Pharm. Res. 23:1850–1856 (2006). doi:10.1007/s11095-006-9011-8.

    Article  PubMed  CAS  Google Scholar 

  26. U. Jacobi, M. Kaiser, R. Toll, S. Mangelsdorf, H. Audring, N. Otberg, W. Sterry, and J. Lademann. Porcine ear skin: an in vitro model for human skin. Skin Res. Technol. 13:19–24 (2007). doi:10.1111/j.1600-0846.2006.00179.x.

    Article  PubMed  Google Scholar 

  27. A. Williams. Alternative membranes for in-vitro studies. Transdermal and Topical Drug Delivery: From Theory to Clinical Practice, Pharmaceutical Press, London, 2003, pp. 54–58

  28. K. Vavrova, K. Lorencova, J. Klimentova, J. Novotny, and A. Hrabalek. HPLC method for determination of in vitro delivery through and into porcine skin of adefovir (PMEA). J. Chrom. B. 853:198–203 (2007). doi:10.1016/j.jchromb.2007.03.012.

    Article  CAS  Google Scholar 

  29. W. J. Fasano, S. C. Carpenter, S. A. Gannon, T. A. Snow, J. C. Stadler, G. L. Kennedy, R. C. Buck, S. H. Korzeniowski, P. M. Hinderliter, and R. A. Kemper. Absorption, distribution, metabolism, and elimination of 8–2 fluorotelomer alcohol in the rat. Toxicol. Sci. 91:341–355 (2006). doi:10.1093/toxsci/kfj160.

    Article  PubMed  CAS  Google Scholar 

  30. R. Fraginals, M. Schaeffer, J. L. Stampf, and C. Benezra. Perfluorinated analogues of poison ivy allergens. Synthesis and skin tolerogenic activity in mice. J. Med. Chem. 34:1024–1027 (1991). doi:10.1021/jm00107a022.

    Article  PubMed  CAS  Google Scholar 

  31. B. J. Aungst. Structure/effect studies of fatty acid isomers as skin penetration enhancers and skin irritants. Pharm. Res. 6:244–247 (1989). doi:10.1023/A:1015921702258.

    Article  PubMed  CAS  Google Scholar 

  32. J. Klimentova, P. Kosak, K. Vavrova, T. Holas, and A. Hrabalek. Influence of terminal branching on the transdermal permeation-enhancing activity in fatty alcohols and acids. Bioorg. Med. Chem. 14:7681–7687 (2006). doi:10.1016/j.bmc.2006.08.013.

    Article  PubMed  CAS  Google Scholar 

  33. J. Klimentova, P. Kosak, K. Vavrova, T. Holas, J. Novotny, and A. Hrabalek. Transkarbams with terminal branching as transdermal permeation enhancers. Bioorg. Med. Chem. Lett. 18:1712–1715 (2008). doi:10.1016/j.bmcl.2008.01.040.

    Article  PubMed  CAS  Google Scholar 

  34. D. Chantasart, S. K. Li, N. He, K. S. Warner, S. Prakongpan, and W. I. Higuchi. Mechanistic studies of branched-chain alkanols as skin permeation enhancers. J. Pharm. Sci. 93:762–779 (2004). doi:10.1002/jps.10550.

    Article  PubMed  CAS  Google Scholar 

  35. A. Hrabalek, K. Vavrova, P. Dolezal, and M. Machacek. Esters of 6-aminohexanoic acid as skin permeation enhancers: The effect of branching in the alkanol moiety. J. Pharm. Sci. 94:1494–1499 (2005). doi:10.1002/jps.20376.

    Article  PubMed  CAS  Google Scholar 

  36. J. J. Prusakiewicz, C. Ackermann, and R. Voorman. Comparison of skin esterase activities from different species. Pharm. Res. 23:1517–1524 (2006). doi:10.1007/s11095-006-0273-y.

    Article  PubMed  CAS  Google Scholar 

  37. W. Montagna. Histology and cytochemistry of human skin. IX. The distribution of non-specific esterases. J. Biophys. Biochem. Cytol. 1:13–16 (1955).

    Article  PubMed  CAS  Google Scholar 

  38. D. J. Davies, R. J. Ward, and J. R. Heylings. Multi-species assessment of electrical resistance as a skin integrity marker for in vitro percutaneous absorption studies. Toxicol. In Vitro. 18:351–358 (2004). doi:10.1016/j.tiv.2003.10.004.

    Article  PubMed  CAS  Google Scholar 

  39. A. Holy, J. Gunter, H. Dvorakova, M. Masojidkova, G. Andrei, R. Snoeck, J. Balzarini, and E. De Clercq. Structure-antiviral activity relationship in the series of pyrimidine and purine N-[2-(2-phosphonomethoxy)ethyl] nucleotide analogues. 1. Derivatives substituted at the carbon atoms of the base. J. Med. Chem. 42:2064–2086 (1999). doi:10.1021/jm9811256.

    Article  PubMed  CAS  Google Scholar 

  40. V. Kopecky Jr., P. Mojzes, J. V. Burda, and L. Dostal. Raman spectroscopy study of acid-base and structural properties of 9-[2-(phosphonomethoxy)ethyl]adenine in aqueous solutions. Biopolymers. 67:285–288 (2002). doi:10.1002/bip.10111.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Centre for New Antivirals and Antineoplastics (1M0508), the Ministry of Education of the Czech Republic (MSM0021620822) and the Grant Agency of the Charles University (286/2006/B-CH/FaF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kateřina Vávrová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novotný, J., Kovaříková, P., Novotný, M. et al. Dimethylamino Acid Esters as Biodegradable and Reversible Transdermal Permeation Enhancers: Effects of Linking Chain Length, Chirality and Polyfluorination. Pharm Res 26, 811–821 (2009). https://doi.org/10.1007/s11095-008-9780-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9780-3

KEY WORDS

Navigation