Skip to main content
Log in

A Comparison Between Polymeric Microsphere and Bacterial Vectors for Macrophage P388D1 Gene Delivery

Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to compare bacterial and polymeric gene delivery devices for the ability to deliver plasmid DNA to a murine macrophage P388D1 cell line.

Methods

An 85:15 ratio of poly(lactic-co-glycolic acid) (PLGA) and poly(β-amino ester) polymers were formulated into microspheres that physically entrapped plasmid DNA encoding for the firefly luciferase reporter gene; whereas, the same plasmid was biologically transformed into a strain of Escherichia coli engineered to produce recombinant listeriolysin O. The two delivery devices were then tested for gene delivery and dosage effects using a macrophage cell line with both assays taking advantage of a 96-well high throughput format to quantify and compare each vector type.

Results

Gene delivery was comparable for both vectors at higher vector dosages while lower dosages showed an improved delivery for the microsphere vectors. Delivery efficiency (defined as luciferase measurement/mg cellular protein/ng DNA delivered) was 881 luminescence mg−1 ng−1 for polymeric microspheres compared to 171 luminescence mg−1 ng−1 for the bacterial vectors.

Conclusion

A first head-to-head comparison between polymeric and bacterial gene delivery vectors shows a delivery advantage for polymeric microspheres that must also be evaluated in light of vector production, storage, and future potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

References

  1. C. Reis e Sousa, P. D. Stahl, and J. M. Austyn. Phagocytosis of antigens by Langerhans cells in vitro. J. Exp. Med. 178:509–519 (1993).

    Article  PubMed  CAS  Google Scholar 

  2. R. Langer, J. L. Cleland, and J. Hanes. New advances in microsphere-based single-dose vaccines. Adv. Drug Deliv. Rev. 28:97–119 (1997).

    Article  PubMed  Google Scholar 

  3. O. Takeuchi, K. Hoshino, T. Kawai, H. Sanjo, H. Takada, T. Ogawa, K. Takeda, and S. Akira. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity. 11:443–451 (1999).

    Article  PubMed  CAS  Google Scholar 

  4. H. Hemmi, O. Takeuchi, T. Kawai, T. Kaisho, S. Sato, H. Sanjo, M. Matsumoto, K. Hoshino, H. Wagner, K. Takeda, and S. Akira. A Toll-like receptor recognizes bacterial DNA. Nature. 408:740–745 (2000).

    Article  PubMed  CAS  Google Scholar 

  5. D. Wang, D. R. Robinson, G. S. Kwon, and J. Samuel. Encapsulation of plasmid DNA in biodegradable poly(d, l-lactic-co-glycolic acid) microspheres as a novel approach for immunogene delivery. J. Control. Release. 57:9–18 (1999).

    Article  PubMed  CAS  Google Scholar 

  6. M. Singh, M. Briones, G. Ott, and D. O'Hagan. Cationic microparticles: a potent delivery system for DNA vaccines. Proc. Natl. Acad. Sci. U. S. A. 97:811–816 (2000).

    Article  PubMed  CAS  Google Scholar 

  7. S. Parsa, and B. Pfeifer. Engineering bacterial vectors for delivery of genes and proteins to antigen-presenting cells. Mol. Pharm. 4:4–17 (2007).

    Article  PubMed  CAS  Google Scholar 

  8. M. L. Hedley, J. Curley, and R. Urban. Microspheres containing plasmid-encoded antigens elicit cytotoxic T-cell responses. Nat. Med. 4:365–368 (1998).

    Article  PubMed  CAS  Google Scholar 

  9. D. M. Lynn, M. M. Amiji, and R. Langer. pH-responsive polymer microspheres: rapid release of encapsulated material within the range of intracellular pH. Angew. Chem. Int. Ed. Engl. 40:1707–1710 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. D. M. Lynn, D. G. Anderson, D. Putnam, and R. Langer. Accelerated discovery of synthetic transfection vectors: parallel synthesis and screening of a degradable polymer library. J. Am. Chem. Soc. 123:8155–8156 (2001).

    Article  PubMed  CAS  Google Scholar 

  11. S. R. Little, D. M. Lynn, Q. Ge, D. G. Anderson, S. V. Puram, J. Chen, H. N. Eisen, and R. Langer. Poly-beta amino ester-containing microparticles enhance the activity of nonviral genetic vaccines. Proc. Natl. Acad. Sci. U. S. A. 101:9534–9539 (2004).

    Article  PubMed  CAS  Google Scholar 

  12. S. K. Hoiseth, and B. A. Stocker. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature. 291:238–239 (1981).

    Article  PubMed  CAS  Google Scholar 

  13. D. R. Sizemore, A. A. Branstrom, and J. C. Sadoff. Attenuated Shigella as a DNA delivery vehicle for DNA-mediated immunization. Science. 270:299–302 (1995).

    Article  PubMed  CAS  Google Scholar 

  14. Z. K. Pan, G. Ikonomidis, A. Lazenby, D. Pardoll, and Y. Paterson. A recombinant Listeria monocytogenes vaccine expressing a model tumour antigen protects mice against lethal tumour cell challenge and causes regression of established tumours. Nat. Med. 1:471–477 (1995).

    Article  PubMed  CAS  Google Scholar 

  15. A. Marra, and R. R. Isberg. Common entry mechanisms. Bacterial pathogenesis. Curr. Biol. 6:1084–1086 (1996).

    Article  PubMed  CAS  Google Scholar 

  16. C. Grillot-Courvalin, S. Goussard, and P. Courvalin. Bacteria as gene delivery vectors for mammalian cells. Curr. Opin. Biotechnol. 10:477–481 (1999).

    Article  PubMed  CAS  Google Scholar 

  17. D. E. Higgins, N. Shastri, and D. A. Portnoy. Delivery of protein to the cytosol of macrophages using Escherichia coli K-12. Mol. Microbiol. 31:1631–1641 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. I. Castagliuolo, E. Beggiao, P. Brun, L. Barzon, S. Goussard, R. Manganelli, C. Grillot-Courvalin, and G. Palu. Engineered E. coli delivers therapeutic genes to the colonic mucosa. Gene Ther. 12:1070–1078 (2005).

    Article  PubMed  CAS  Google Scholar 

  19. J. Sambrook, E. F. Fritsch, and T. Maniatis. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.

    Google Scholar 

  20. D. Lynn, and R. Langer. Degradable poly(beta-amino esters): synthesis, characterization, and self-assembly with plasmid DNA. J. Am. Chem. Soc. 122:10761–10768 (2000).

    Article  CAS  Google Scholar 

  21. B. A. Pfeifer, J. A. Burdick, S. R. Little, and R. Langer. Poly(ester-anhydride):poly(beta-amino ester) micro- and nanospheres: DNA encapsulation and cellular transfection. Int. J. Pharm. 304:210–219 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. M. Svensson, B. Stockinger, and M. J. Wick. Bone marrow-derived dendritic cells can process bacteria for MHC-I and MHC-II presentation to T cells. J. Immunol. 158:4229–4236 (1997).

    PubMed  CAS  Google Scholar 

  23. K. J. Radford, D. E. Higgins, S. Pasquini, E. J. Cheadle, L. Carta, A. M. Jackson, N. R. Lemoine, and G. Vassaux. A recombinant E. coli vaccine to promote MHC class I-dependent antigen presentation: application to cancer immunotherapy. Gene Ther. 9:1455–1463 (2002).

    Article  PubMed  CAS  Google Scholar 

  24. L. Thiele, B. Rothen-Rutishauser, S. Jilek, H. Wunderli-Allenspach, H. P. Merkle, and E. Walter. Evaluation of particle uptake in human blood monocyte-derived cells in vitro. Does phagocytosis activity of dendritic cells measure up with macrophages? J. Control. Release. 76:59–71 (2001).

    Article  PubMed  CAS  Google Scholar 

  25. B. Demeneix, and J. P. Behr. Artificial Self-Assembling Systems for Gene Delivery. Oxford Univ. Press, Washington, DC, 1996.

    Google Scholar 

  26. C. Geoffroy, J. L. Gaillard, J. E. Alouf, and P. Berche. Purification, characterization, and toxicity of the sulfhydryl-activated hemolysin listeriolysin O from Listeria monocytogenes. Infect. Immun. 55:1641–1646 (1987).

    PubMed  CAS  Google Scholar 

  27. S. Kayal, and A. Charbit. Listeriolysin O: a key protein of Listeria monocytogenes with multiple functions. FEMS Microbiol. Rev. 30:514–529 (2006).

    Article  PubMed  CAS  Google Scholar 

  28. H. Chart, H. R. Smith, R. M. La Ragione, and M. J. Woodward. An investigation into the pathogenic properties of Escherichia coli strains BLR, BL21, DH5alpha and EQ1. J. Appl. Microbiol. 89:1048–1058 (2000).

    Article  PubMed  CAS  Google Scholar 

  29. J. Banchereau, F. Briere, C. Caux, J. Davoust, S. Lebecque, Y. J. Liu, B. Pulendran, and K. Palucka. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18:767–811 (2000).

    Article  PubMed  CAS  Google Scholar 

  30. L. Fong, and E. G. Engleman. Dendritic cells in cancer immunotherapy. Annu. Rev. Immunol. 18:245–273 (2000).

    Article  PubMed  CAS  Google Scholar 

  31. M. A. Liu. DNA vaccines: a review. J. Intern. Med. 253:402–410 (2003).

    Article  PubMed  CAS  Google Scholar 

  32. C. Vauthier, C. Schmidt, and P. Couvreur. Measurement of the density of polymeric nanoparticulate drug carriers by isopycnic centrifugation. J. Nanopart. Res. 1:411–418 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Darren Higgins (Harvard) for providing the plasmid encoding the T7-hly construct. B.A.P would like to recognize support from the National Academy of Engineering and S.P. is grateful for support from the Tufts Faculty Research Awards Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blaine A. Pfeifer.

Additional information

Saba Parsa and Yong Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parsa, S., Wang, Y., Fuller, J. et al. A Comparison Between Polymeric Microsphere and Bacterial Vectors for Macrophage P388D1 Gene Delivery. Pharm Res 25, 1202–1208 (2008). https://doi.org/10.1007/s11095-008-9563-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9563-x

Key words

Navigation