Skip to main content
Log in

Amorphization of Indomethacin by Co-Grinding with Neusilin US2: Amorphization Kinetics, Physical Stability and Mechanism

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To quantify the effects of the ratio of indomethacin to Neusilin US2 and the processing humidity on the amorphization kinetics, stability and nature of the interaction.

Materials and Methods

A porcelain jar mill with zirconia balls was used to affect conversion of the physical mixtures (48 g) of indomethacin and Neusilin US2 (in the ratios 1:1 to 1:5) to amorphous states at room temperature (25°C) employing either 0% RH or 75% RH. The percent crystallinity in the samples was determined from ATR-FTIR scans chemometrically. The physical stability of these co-ground amorphous powders was evaluated at 40°C/75% RH and 40°C/0% RH.

Results

The lower the ratio of indomethacin to Neusilin US2, the faster is the amorphization during co-grinding. Higher humidity facilitates amorphization with a more pronounced effect at the lower ratio of indomethacin to Neusilin US2. There is further amorphization of some of the partially amorphized samples on storage at 40°C/75% RH for 3 months. Hydrogen bonding and surface interaction between metal ions of Neusilin US2 and indomethacin can explain changes in the FTIR spectra.

Conclusions

The processing humidity and the ratio of indomethacin to Neusilin US2 are important factors to be considered to affect amorphization during ball milling. Amorphous indomethacin can be stabilized by co-grinding with Neusilin US2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Kinoshita, K. Baba, A. Nagayasu, K. Yamabe, T. Shimooka, Y. Takeichi, M. Azuma, H. Houchi, and K. Minakuchi. Improvement of solubility and oral bioavailability of a poorly water soluble drug, TAS-301, by its melt-adsorption on a porous calcium silicate. J. Pharm. Sci. 91:362–370 (2002).

    Article  PubMed  CAS  Google Scholar 

  2. T. Watanabe, N. Wakiyama, F. Usui, M. Ikeda, T. Isobe, and M. Senna. Stability of amorphous indomethacin compounded with silica. Int. J. Pharm. 226:81–91 (2001).

    Article  PubMed  CAS  Google Scholar 

  3. K. Y. Yang, R. Glemza, and C. I. Jarowski. Effects of amorphous silicon dioxides on drug dissolution. J. Pharm. Sci. 68:560–565 (1979).

    PubMed  CAS  Google Scholar 

  4. E. Yonemochi, S. Kitahara, S. Maeda, S. Yamamura, T. Oguchi, and K. Yamamoto. Physicochemical properties of amorphous clarithromycin obtained by grinding and spray drying. Eur. J. Pharm. Sci. 7:331–338 (1999).

    Article  PubMed  CAS  Google Scholar 

  5. S. Byrn et al., Solid State Chemistry of Drugs, Second ed., 25, 1999.

  6. B. C. Hancock,and M. Parks. What is the true solubility advantage for amorphous pharmaceuticals. Pharm. Res. 17:397–404 (2000).

    Article  PubMed  CAS  Google Scholar 

  7. T. Watanabe, S. Hasegawa, N. Wakiyama, A. Kusai, and M. Senna. Prediction of apparent equilibrium solubility of indomethacin compounded with silica by C13 solid state NMR. Int. J. Pharm. 248:123–129 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. H. Takeuchi, S. Nagira, H. Yamamoto, and Y. Kawashima. Solid dispersion particles of amorphous indomethacin with fine porous silica particles by using spray drying method. Int. J. Pharm. 293:155–164 (2005).

    Article  PubMed  CAS  Google Scholar 

  9. M. Fujii, H. Okada, Y. Shibata, H. Teramachi, M. Kondoh, and Y. Watanabe. Preparation, characterization, and tabletting of a solid dispersion of indomethacin with crospovidone. Int. J. Pharm. 293:145–153 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. T. Watanabe, S. Hasegawa, N. Wakiyama, A. Kusai, and M. Senna. Comparison of polyvinylpyrrolidone and silica nanoparticles as carriers for indomethacin in a solid state dispersion. Int. J. Pharm. 250:283–286 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. A. S. Ali, K. Yamamoto, A. M. El-sayed, F. S. Habib, and Y. Nakai. Molecular behavior of flufenamic acid in physical and ground mixtures with florite. Chem. Pharm. Bull. 40:1289–1294 (1992).

    CAS  Google Scholar 

  12. Y. Nakai, E. Fukuoka, S. Nakajima, and Y. Iida. Effect of grinding on physical and chemical properties of crystalline medicinals with microcrystalline cellulose. II. Retention of volatile medicinals in ground mixture.Chem. Pharm. Bull. 26:2983–2989 (1978).

    CAS  Google Scholar 

  13. H. Sekizaki, K. Danjo, H. Eguchi, Y. Yonezawa, H. Sunada, and A. Otsuka. Solid-state interaction of ibuprofen with polyvinylpyrrolidone. Chem. Pharm. Bull. 43:988–993 (1995).

    Google Scholar 

  14. V. V. Boldyrev, T. P. Shakhtshneider, L. P. Burleva, and V. A. Severtsev. Preparation of the disperse systems of sulfathiazole-polyvinylpyrrolidone by mechanical activation. Drug Dev. Ind. Pharm. 20:1103–1114 (1994).

    CAS  Google Scholar 

  15. N. Kaneniwa and A. Ikekawa. Solubilization of water insoluble organic powders by ball milling in the presence of polyvinylpyrrolidone. Chem. Pharm. Bull. 23:2973–2986 (1975).

    CAS  Google Scholar 

  16. N. Kaneniwa, A. Ikekawa, and M. Sumi. A decrease in crystallinity of amobarbital by mechanical treatment in the presence of the diluents. Chem. Pharm. Bull. 26:2734–2743 (1978).

    CAS  Google Scholar 

  17. M. Cirri, F. Maestrelli, S. Furlanetto, and P. Mura. Solid state characterization of glyburide cyclodextrin co-ground products. J. Therm. Anal. Calorim. 77:413–422 (2004).

    Article  CAS  Google Scholar 

  18. T. P. Shakhtshneider, M. A. Vasiltchenko, A. A. Politov, and V. V. Boldyrev. The mechanochemical preparation of solid disperse systems of ibuprofen-polyethylene glycol. Int. J. Pharm. 130:25–32 (1996).

    Article  CAS  Google Scholar 

  19. M. K. Gupta, A. Vanwert, and R. H. Bogner. Formation of physically stable amorphous drugs by milling with Neusilin. J. Pharm. Sci. 92:502–517 (2003).

    Article  Google Scholar 

  20. T. Konno, K. Kinuno, and K. Kataoka. Physical and chemical changes of medicinals in mixtures with adsorbents in the solid state. I. Effect of vapor pressure of the medicinals on changes in crystalline properties. Chem. Pharm. Bull. 34:301–307 (1986).

    PubMed  CAS  Google Scholar 

  21. K. H. Kim, M. J. Frank, and N. L. Henderson. Application of differential scanning calorimetery to the study of solid drug dispersions. J. Pharm. Sci. 74:283–289 (1985).

    PubMed  CAS  Google Scholar 

  22. T. Oguchi, et al., Improved dissolution of naproxen from solid dispersions with porous additives. Yakuzaigaku 57:168–173 (1997).

    CAS  Google Scholar 

  23. C. Fuji. Company Literature on Neusilin. Fuji Chemical Industry, Toyama, Japan, 1997, pp 3–4.

    Google Scholar 

  24. M. K. Gupta, R. H. Bogner, D. Goldman, and Y. C. Tseng. Mechanism for further enhancement in drug dissolution from solid-dispersion granules upon storage. Pharm. Dev. Technol. 7:103–112 (2002).

    Article  PubMed  CAS  Google Scholar 

  25. M. K. Gupta, Y. C. Tseng, D. Goldman, and R. H. Bogner. Hydrogen bonding with adsorbent during storage governs drug dissolution from solid-dispersion granules. Pharm. Res. 19:1663–1672 (2002).

    Article  PubMed  CAS  Google Scholar 

  26. I. S. Chuang and G. E. Maciel. Probing hydrogen bonding and the local environment of silanols on silica surfaces via nuclear spin cross polarization dynamics. J. Am. Chem. Soc. 118:401–406 (1996).

    Article  CAS  Google Scholar 

  27. I. S. Chuang and G. E. Maciel. A detailed model of local structure and silanol hydrogen bonding of silica gel surfaces. J. Phys. Chem. B 101:3052–3064 (1997).

    Article  CAS  Google Scholar 

  28. M. O'Brien, J. McCauley, and E. Cohen. Indomethacin. In H. G. Brittain (ed.), Analytical Profiles of Drug Substances, Volume 13, Academic, London, UK, 1984, pp. 211–238.

    Google Scholar 

  29. L. S. Taylor and G. Zografi. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm. Res. 14:1691–1698 (1997).

    Article  PubMed  CAS  Google Scholar 

  30. K. J. Crowley and G. Zografi. Water vapor absorption into amorphous hydrophobic drug/poly(vinylpyrrolidone) dispersions. J. Pharm. Sci. 91:2150–2165 (2002).

    Article  PubMed  CAS  Google Scholar 

  31. E. Y. Shalaev and G. Zografi. How does residual water affect the solid-state degradation of drugs in the amorphous state?. J. Pharm. Sci. 85:1137–1141 (1996).

    Article  PubMed  CAS  Google Scholar 

  32. V. Andronis and G. Zografi. The molecular mobility of supercooled amorphous indomethacin as a function of temperature and relative humidity. Pharm. Res. 15:835–842 (1998).

    Article  PubMed  CAS  Google Scholar 

  33. P. Tong and G. Zografi. Solid state characteristics of amorphous sodium indomethacin relative to its free acid. Pharm. Res. 16:1186–1192 (1999).

    Article  PubMed  CAS  Google Scholar 

  34. P. Tong and G. Zografi. A study of amorphous molecular dispersions of indomethacin and its sodium salt. J. Pharm. Sci. 90:1991–2004 (2001).

    Article  PubMed  CAS  Google Scholar 

  35. C. Gu and K. G. Kartikeyan. Interaction of tetracycline with aluminum and iron hydrous oxides. Environ. Sci. Technol. 39:2660–2667 (2005).

    Article  PubMed  CAS  Google Scholar 

  36. A. Jubert, N. E. Massa, L. L. Tevez and N. B. Okulik. Vibrational and theoretical studies of the non-steroidal anti-inflamatory drugs Niflumic [2-3((3-trifluoromethy;)phenylamino)-3-pyridinecarboxylic acid]; Diclofenac [[2-(2,6-dichlorophenyl)amino]-benzeneacetic acid] and Indometacin acids [1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indole-3-acetic acid]. Vibr. Spectrosc. 37:161–178 (2005).

    Article  CAS  Google Scholar 

  37. P. Mura, et al., Investigation of the effects of grinding and co-grinding on physicochemical properties of glisentide. J. Pharm. Biomed. Anal. 30(2):227–237 (2002).

    Article  PubMed  CAS  Google Scholar 

  38. A. E. Aboutaleb et al., Enhancement of dissolution rate of meclozine HCl by co-grinding and loading onto certain adsorbents. Bull. Pharm. Sci. Assiut University, 25(1):7–14 (2002).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Dane O. Kildsig Center for Pharmaceutical Processing Research. We are thankful to Mr. Gary Lavigne and Dr. Jack Gromek at the Institute of Material Sciences, University of Connecticut for assistance with FTIR instrument and X-ray diffractometer, respectively. We also want to thank Mr. Sharad Murdande at Pfizer, Groton, CT for his help with HPLC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin H. Bogner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahl, D., Bogner, R.H. Amorphization of Indomethacin by Co-Grinding with Neusilin US2: Amorphization Kinetics, Physical Stability and Mechanism. Pharm Res 23, 2317–2325 (2006). https://doi.org/10.1007/s11095-006-9062-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9062-x

Key words

Navigation