Skip to main content

Advertisement

Log in

Polymeric Gene Transfection on Insulin-Secreting Cells: Sulfonylurea Receptor-Mediation and Transfection Medium Effect

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

In vitro transfection of secreting cells is regarded as one strategy for improved cell engineering/transplantation. Insulin-secreting insulinoma cell lines or pancreatic β-cells could be genetically engineered using designed polymeric vectors which are safer than viral vectors. This study investigates the effects of the constituents in transfection media on polymeric transfection.

Methods

Polyplexes conjugated with sulfonylurea (SU) were evaluated under different transfection conditions for gene transfection and their effects on cytotoxicity and insulin secretion. Several components in transfection media specifically associated with the insulin secretion pathway were amino acids, vitamins, Ca2+ and K+. The interactions of the polyplexes with insulin were monitored by surface charge and particle size to monitor how insulin as a protein influences transfection.

Results

For an insulin-secreting cell line (RINm5F), polyplexes in Ca2+-containing KRH medium (Ca2+(+)KRH) enhanced transfection and did not cause damage to biological functions. When adding amino acids, vitamins, or K+ or depleting Ca2+ from Ca2+(+)KRH, poly(l-lysine)/DNA complexes showed a greater reduction in transfection than SU receptor (SUR)-targeting polyplexes (SU-polyplex). Positively charged polyplexes interacted with insulin, developing a negative surface charge, and these interactions may cause a decrease in transfection.

Conclusion

The findings suggest that in vitro and ex vivo polymeric transfection of insulin-secreting cells can be modulated and enhanced by adjusting the transfection conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Ricordi and T. B. Strom. Clinical islet transplantation: advances and immunological challenges. Nat. Rev. Immunol. 4:259–268 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. M. K. Lee and Y. H. Bae. Cell transplantation for endocrine disorders. Adv. Drug Deliv. Rev. 42:103–120 (2000).

    Article  PubMed  CAS  Google Scholar 

  3. R. Bottino, P. Lemarchand, M. Trucco, and N. Giannoukakis. Gene- and cell-based therapeutics for type I diabetes mellitus. Gene Ther. 10:875–889 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. A. S. Narang, K. Cheng, J. Henry, C. Zhang, O. Sabek, D. Fraga, M. Kotb, A. O. Gaber, and R. I. Mahato. Vascular endothelial growth factor gene delivery for revascularization in transplanted human islets. Pharm. Res. 21:15–25 (2004).

    Article  PubMed  CAS  Google Scholar 

  5. D. Casper, S. J. Engstrom, G. R. Mirchandani, A. Pidel, D. Palencia, P. H. Cho, M. Brownlee, D. Edelstein, H. J. Federoff, and W. J. Sonstein. Enhanced vascularization and survival of neural transplants with ex vivo angiogenic gene transfer. Cell Transplant 11:331–349 (2002).

    PubMed  Google Scholar 

  6. G. Leibowitz, G. M. Beattie, T. Kafri, V. Cirulli, A. D. Lopez, A. Hayek, and F. Levine. Gene transfer to human pancreatic endocrine cells using viral vectors. Diabetes 48:745–753 (1999).

    Article  PubMed  CAS  Google Scholar 

  7. H. C. Kang, S. Kim, M. Lee, and Y. H. Bae. Polymeric gene carrier for insulin secreting cells: Poly(l-lysine)-g-sulfonylurea for receptor mediated transfection. J. Control. Release 105:164–176 (2005).

    Article  PubMed  CAS  Google Scholar 

  8. D. Martinez-Fong, I. Navarro-Quiroga, I. Ochoa, I. Alvarez-Maya, M. A. Meraz, J. Luna, and J. A. Arias-Montano. Neurotensin-SPDP-poly-l-lysine conjugate: a nonviral vector for targeted gene delivery to neural cells. Brain Res. Mol. Brain Res. 69:249–262 (1999).

    Article  PubMed  CAS  Google Scholar 

  9. J. Zeng and S. Wang. Enhanced gene delivery to PC12 cells by a cationic polypeptide. Biomaterials. 26:679–686 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. H. C. Kang, M. Lee, and Y. H. Bae. Polymeric gene carriers. Crit. Rev. Eukaryot. Gene Expr. 15:317–342 (2005).

    PubMed  CAS  Google Scholar 

  11. B. I. Florea, C. Meaney, H. E. Junginger, and G. Borchard. Transfection efficiency and toxicity of polyethylenimine in differentiated Calu-3 and nondifferentiated COS-1 cell cultures. AAPS PharmSci 4:E12 (2002).

    Article  PubMed  Google Scholar 

  12. R. Acosta, C. Montanez, P. Gomez, and B. Cisneros. Delivery of antisense oligonucleotides to PC12 cells. Neurosci. Res. 43:81–86 (2002).

    Article  PubMed  CAS  Google Scholar 

  13. S. Charles, T. Tamagawa, and J. C. Henquin. A single mechanism for the stimulation of insulin release and 86Rb+ efflux from rat islets by cationic amino acids. Biochem. J. 208:301–308 (1982).

    PubMed  CAS  Google Scholar 

  14. A. Sener, F. Blachier, J. Rasschaert, A. Mourtada, F. Malaisse-Lagae, and W. J. Malaisse. Stimulus-secretion coupling of arginine-induced insulin release: comparison with lysine-induced insulin secretion. Endocrinology. 124:2558–2567 (1989).

    Article  PubMed  CAS  Google Scholar 

  15. N. H. McClenaghan, C. R. Barnett, F. P. O'Harte, and P. R. Flatt. Mechanisms of amino acid-induced insulin secretion from the glucose-responsive BRIN-BD11 pancreatic B-cell line. J. Endocrinol. 151:349–357 (1996).

    Article  PubMed  CAS  Google Scholar 

  16. C. Li, C. Buettger, J. Kwagh, A. Matter, Y. Daikhin, I. B. Nissim, H. W. Collins, M. Yudkoff, C. A. Stanley, and F. M. Matschinsky. A signaling role of glutamine in insulin secretion. J. Biol. Chem. 279:13393–13401 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. H. Sone, M. Ito, K. Sugiyama, M. Ohneda, M. Maebashi, and Y. Furukawa. Biotin enhances glucose-stimulated insulin secretion in the isolated perfused pancreas of the rat. J. Nutr. Biochem. 10:237–243 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. P. Rathanaswami, A. Pourany, and R. Sundaresan. Effects of thiamine deficiency on the secretion of insulin and the metabolism of glucose in isolated rat pancreatic islets. Biochem. Int. 25:577–583 (1991).

    PubMed  CAS  Google Scholar 

  19. C. J. Barker, I. B. Leibiger, B. Leibiger, and P. O. Berggren. Phosphorylated inositol compounds in β-cell stimulus-response coupling. Am. J. Physiol. Endocrinol. Metab. 283:E1113–E1122 (2002).

    PubMed  CAS  Google Scholar 

  20. P. Rorsman and E. Renstrom. Insulin granule dynamics in pancreatic beta cells. Diabetologia 46:1029–1045 (2003).

    Article  PubMed  CAS  Google Scholar 

  21. A. T. L. Young, R. B. Moore, A. G. Murray, J. C. Mullen, and J. R. T. Lakey. Assessment of different transfection parameters in efficiency optimization. Cell Transplant 13:179–185 (2004).

    PubMed  CAS  Google Scholar 

  22. M. Ogris, S. Brunner, S. Schuller, R. Kircheis, and E. Wagner. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. 6:595–605 (1999).

    Article  PubMed  CAS  Google Scholar 

  23. D. Mears. Regulation of insulin secretion in islets of Langerhans by Ca(2+)channels. J. Membr. Biol. 200:57–66 (2004).

    Article  PubMed  CAS  Google Scholar 

  24. M. Komatsu, T. Schermerhorn, T. Aizawa, and G. Sharp. Glucose stimulation of insulin release in the absence of extracellular Ca2+ and in the absence of any increase in intracellular Ca2+ in rat pancreatic islets. Proc. Natl. Acad. Sci. USA 92:10728–10732 (1995).

    Article  PubMed  CAS  Google Scholar 

  25. I. Quesada, J. Rovira, F. Martin, E. Roche, A. Nadal, and B. Soria. Nuclear KATP channels trigger nuclear Ca2+ transients that modulate nuclear function. Proc. Natl. Acad. Sci. USA 99:9544–9549 (2002).

    Article  PubMed  CAS  Google Scholar 

  26. B. J. Zunkler, M. Wos-Maganga, and U. Panten. Fluorescence microscopy studies with a fluorescent glibenclamide derivative, a high-affinity blocker of pancreatic beta-cell ATP-sensitive K+ currents. Biochem. Pharmacol. 67:1437–1444 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. M. Molinete, J. C. Irminger, S. A. Tooze, and P. A. Halban. Trafficking/sorting and granule biogenesis in the beta-cell. Semin. Cell Dev. Biol. 11:243–251 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by NIH DK 56884. The authors acknowledge Deepa Mishra for her proof-reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You Han Bae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, H.C., Bae, Y.H. Polymeric Gene Transfection on Insulin-Secreting Cells: Sulfonylurea Receptor-Mediation and Transfection Medium Effect. Pharm Res 23, 1797–1808 (2006). https://doi.org/10.1007/s11095-006-9027-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9027-0

Key words

Navigation