Skip to main content
Log in

Solid-State Fluorescence Studies of Some Polymorphs of Diflunisal*

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The solid-state luminescence spectroscopy of organic molecules is strongly affected by the effects of excited state energy transfer, with the fluorescence of solids often differing significantly from the fluorescence of the molecule dissolved in a solution phase. Because the magnitude of these solid-state effects is determined by the crystallography of the system, solid-state fluorescence studies can be used to gain insight into the polymorphism of the system. To this end, the spectroscopic properties of four polymorphs of diflunisal have been obtained, and compared to the properties of the molecule in the solution phase.

Methods

Fluorescence excitation and emission spectra were obtained on four polymorphic forms of diflunisal, and on the compound dissolved in water.

Results

It was found that exciton effects dominate the excitation spectra of diflunisal in the four studied polymorphic forms. These phenomena lead to a decrease in the energy of the excitation bands relative to that observed for the free molecule in fluid solution, and in a splitting of the excitation peak into two Davydov components.

Conclusions

The trends in the excitation and emission spectra led to the grouping of diflunisal Forms I, II, and III into one category, and diflunisal Form IV into a separate category. Because other work has established that Form IV is characterized by the highest crystal density and consequent degree of intermolecular interaction, the magnitude of the exciton coupling can be used to estimate the degree of face-to-face overlap of the salicylate-type fluorophores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. L. Threlfall (1995) ArticleTitleAnalysis of organic polymorphs—a review Analyst 120 2435–2460 Occurrence Handle1:CAS:528:DyaK2MXovFOit78%3D

    CAS  Google Scholar 

  2. H. G. Brittain (1997) ArticleTitleSpectral methods for the characterization of polymorphs and solvates J. Pharm. Sci. 86 405–412 Occurrence Handle1:CAS:528:DyaK2sXhslamt7g%3D Occurrence Handle9109040

    CAS  PubMed  Google Scholar 

  3. H. G. Brittain (1999) Methods for the characterization of polymorphs and solvates H.G. Brittain (Eds) Polymorphism in Pharmaceutical Solids Marcel Dekker New York 227–278

    Google Scholar 

  4. J. Bernstein (2002) Analytical techniques for studying and characterizing polymorphs. Polymorphism in Molecular Crystals Clarendon Press London 94–150

    Google Scholar 

  5. D. E. Bugay A. C. Williams (1995) Vibrational spectroscopy H. G. Brittain (Eds) Physical Characterization of Pharmaceutical Solids Marcel Dekker New York 59–91

    Google Scholar 

  6. W. P. Findlay D. E. Bugay (1998) ArticleTitleUtilization of fourier transform raman spectroscopy for the study of pharmaceutical crystal forms J. Pharm. Biomed. Anal. 16 921–930 Occurrence Handle1:CAS:528:DyaK1cXitFCjtrs%3D Occurrence Handle9547695

    CAS  PubMed  Google Scholar 

  7. C. J. Frank (1999) Review of pharmaceutical applications of raman spectroscopy M. J. Pelletier (Eds) Analytical Applications of Raman Spectroscopy Blackwell Science London 224–275

    Google Scholar 

  8. D. E. Bugay (1993) ArticleTitleSolid-state nuclear magnetic resonance spectroscopy: theory and pharmaceutical applications Pharm. Res. 10 317–327 Occurrence Handle1:CAS:528:DyaK3sXitF2mt7g%3D Occurrence Handle8464803

    CAS  PubMed  Google Scholar 

  9. D. E. Bugay (1995) Magnetic resonance spectrometry H. G. Brittain (Eds) Physical Characterization of Pharmaceutical Solids Marcel Dekker New York 93–125

    Google Scholar 

  10. P. A. Tishmack D. E. Bugay S. R. Byrn (2003) ArticleTitleSolid-state nuclear magnetic resonance spectroscopy—pharmaceutical applications J. Pharm. Sci. 92 441–474 Occurrence Handle1:CAS:528:DC%2BD3sXitVWquro%3D Occurrence Handle12587108

    CAS  PubMed  Google Scholar 

  11. M. Tanaka H. Matsui J.-I. Mizoguchi S. Kashino (1994) ArticleTitleOptical properties, thermochromism, and crystal structures of the dimorphs of 2-iodoanilinium picrate Bull. Chem. Soc. Jpn. 67 1572–1579 Occurrence Handle1:CAS:528:DyaK2cXlvFWqtrc%3D

    CAS  Google Scholar 

  12. Y. Inouye Y. Sakaino (2000) ArticleTitleRed, orange, and yellow crystals of 4,5-bis(4-methoxy phenyl)-2-(3-nitrophenyl)-1H-imidazole Acta Crystallogr. C56 884–887 Occurrence Handle1:CAS:528:DC%2BD3cXltlyku74%3D

    CAS  Google Scholar 

  13. X. He U. J. Griesser J. G. Stowell T. B. Borchardt S. R. Byrn (2001) ArticleTitleConformational color polymorphism and control of crystallization of 5-methyl-2-nitrophenyl)amino]-3-thiophenecarbonitrile J. Pharm. Sci. 90 374–388

    Google Scholar 

  14. J. R. Lakowicz (1999) Principles of Fluorescence Spectroscopy EditionNumber2 Kluwer/Plenum New York

    Google Scholar 

  15. H. G. Brittain (2004) ArticleTitleFluorescence studies of the transformation of carbamazepine anhydrate form-III to its dihydrate phase J.Pharm. Sci. 93 375–383 Occurrence Handle1:CAS:528:DC%2BD2cXhsFansr4%3D Occurrence Handle14705194

    CAS  PubMed  Google Scholar 

  16. M. L. Cotton R. A. Hux (1985) Diflunisal K. Florey (Eds) Analytical Profiles of Drug Substances Academic Press Orlando 491–526

    Google Scholar 

  17. M. C. Martinez-Oharriz C. Martin M. M. Goni C. Rodriguez-Espinosa M. C. Tros de Ilarduya-Apaolaza M. Sanchez (1994) ArticleTitlePolymorphism of diflunisal: isolation and solid-state characteristics of a new crystal form J. Pharm. Sci. 83 174–177 Occurrence Handle1:CAS:528:DyaK2cXmt1WjsA%3D%3D Occurrence Handle8169784

    CAS  PubMed  Google Scholar 

  18. L. K. Hansen G. L. Perlovich A. Bauer-Brandl (2001) ArticleTitleThe 1:1 hydrate of diflunisal Acta Cryst. E57 o477–o479 Occurrence Handle1:CAS:528:DC%2BD3MXjtFeit7Y%3D

    CAS  Google Scholar 

  19. L. K. Hansen G. L. Perlovich A. Bauer-Brandl (2001) ArticleTitleDiflunisal-hexane (4/1) Acta Cryst. E57 o604–o606 Occurrence Handle1:CAS:528:DC%2BD3MXkslKgtro%3D

    CAS  Google Scholar 

  20. A. Bauer-Brandl G. L. Perlovich L. K. Hansen (2001) ArticleTitleInterrelation between thermochemical and structural data of polymorphs exemplified by diflunisal J. Pharm. Sci. 91 1036–1045

    Google Scholar 

  21. W. I. Cross N. Blagden R. J. Davey R. G. Pritchard M. A. Neumann R. J. Roberts R. C. Rowe (2003) ArticleTitleA whole output strategy for polymorph screening: combining crystal structure prediction, graph set analysis, and targeted crystallization experiments in the case of diflunisal Cryst. Growth Des. 3 151–158 Occurrence Handle1:CAS:528:DC%2BD38XpsFCnsr0%3D

    CAS  Google Scholar 

  22. C. A. Parker (1968) NoChapterTitle Photoluminescence of Solutions Elsevier Amsterdam 186–191

    Google Scholar 

  23. J. I. Frenkel (2003) ArticleTitleOn the transformation of light into heat in solids Phys. Rev. 37 151–158

    Google Scholar 

  24. A. S. Davydov (1962) Theory of Molecular Excitons McGraw-Hill New York

    Google Scholar 

  25. D. P. Craig S. H. Walmsley (1968) Excitons in Molecular Crystals W.A. Benjamin New York

    Google Scholar 

  26. D. P. Craig and P. C. Hobbins. The polarized spectrum of anthracene. Part I, the assignment of the intense short wavelength system. J. Chem. Soc. London 539–548 (1955).

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is to be considered as Part 2 in the series, “Studies of the Fluorescence of Pharmaceutical Materials in the Solid State,” with reference (17) being the preceding paper in the series.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brittain, H.G., Elder, B.J., Isbester, P.K. et al. Solid-State Fluorescence Studies of Some Polymorphs of Diflunisal*. Pharm Res 22, 999–1006 (2005). https://doi.org/10.1007/s11095-005-4595-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-4595-y

Key words

Navigation