Skip to main content

Advertisement

Log in

A Natural Compound (Ginsenoside Re) Isolated from Panax ginseng as a Novel Angiogenic Agent for Tissue Regeneration

  • Research Papers
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

No Heading

Purpose.

The primary challenge for tissue engineering is to develop a vascular supply that can support the metabolic needs of the engineered tissues in an extracellular matrix. In this study, the feasibility of using a natural compound, ginsenoside Re, isolated from Panax ginseng in stimulating angiogenesis and for tissue regeneration was evaluated.

Methods.

Effects of ginsenoside Re on the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) were examined in vitro. Additionally, angiogenesis and tissue regeneration in a genipin-fixed porous acellular bovine pericardium (extracellular matrix; ECM) incorporated with ginsenoside Re implanted subcutaneously in a rat model were investigated. Basic fibroblast growth factor (bFGF) was used as a control.

Results.

It was found that HUVEC proliferation, migration in a Transwell plate, and tube formation on Matrigel were all significantly enhanced in the presence of bFGF or ginsenoside Re. Additionally, effects of ginsenoside Re on HUVEC proliferation, migration, and tube formation were dose-dependent and reached a maximal level at a concentration of about 30 μg/ml. The in vivo results obtained at 1 week postoperatively showed that the density of neocapillaries and the tissue hemoglobin content in the ECMs were significantly enhanced by bFGF or ginsenoside Re. These results indicated that angiogenesis in the ECMs was significantly enhanced by loading with bFGF or ginsenoside Re. At 1 month postoperatively, vascularzied neo-connective-tissue fibrils were found to fill the pores in the ECMs loaded with bFGF or ginsenoside Re.

Conclusions.

The aforementioned results indicated that like bFGF, ginsenoside Re-associated induction of angiogenesis enhanced tissue regeneration, supporting the concept of therapeutic angiogenesis in tissue-engineering strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

bFGF:

basic fibroblast growth factor

ECM:

extracellular matrix

ECM/bFGF:

the ECM loaded with bFGF

ECM/control:

the ECM dip-coated in the drug-free gelatin solution

ECM/Re:

the ECM loaded with ginsenoside Re

H&E:

hematoxylin and eosin

HUVEC:

human umbilical vein endothelial cell

MTS:

3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

NO:

nitric oxide

NOS:

nitric oxide synthase

PBS:

phosphate buffered saline

References

  1. 1. L. G. Griffith and G. Naughton. Tissue engineering: current challenges and expanding opportunities. Science 295:1009–1014 (2002).

    CAS  PubMed  Google Scholar 

  2. 2. P. Carmeliet and R. K. Jain. Angiogenesis in cancer and other diseases. Nature 407:249–257 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. 3. C. K. Colton. Implantable biohybrid artificial organs. Cell Transplant 4:415–436 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. 4. M. K. Smith, M. C. Peters, T. P. Richardson, J. C. Garbern, and D. J. Mooney. Locally enhanced angiogenesis promotes transplanted cell survival. Tissue Eng. 10:63–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. 5. L. D. Shea, E. Smiley, J. Bonadio, and D. J. Mooney. DNA delivery from polymer matrices for tissue engineering. Nat. Biotechnol. 17:551–554 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. 6. K. Y. Lee, C. R. Halberstadt, W. D. Holder, and D. J. Mooney. Breast reconstruction, In: R. P. Lanza, R. Langer, and J. Vacanti, (eds), Principles of Tissue Engineering. Academic Press, New York, 2000, pp. 409–423

    Google Scholar 

  7. 7. Y. Tabata. Tissue regeneration based on growth factor release. Tissue Eng. 9:S5–S15 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. 8. R. Y. K. Chan, W. F. Chen, A. Dong, D. Guo, and M. S. Wong. Estrogen-like activity of ginsenoside-Rg1 derived from panax notoginseng. J. Clin. Endocrinol. Metab. 87:3691–3695 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. 9. A. S. Attele, J. A. Wu, and C. S. Yuan. Ginseng pharmacology multiple constituents and multiple actions. Biochem. Pharmacol. 58:1685–1693 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. 10. N. Morisaki, S. Watanabe, M. Tezuka, M. Zenibayashi, R. Shiina, N. Koyama, T. Kanzaki, and Y. Saito. Mechanism of angiogenic effects of saponin from Ginseng Radix rubra in human umbilical vein endothelial cells. Br. J. Pharmacol. 115:1188–1193 (1995).

    CAS  PubMed  Google Scholar 

  11. 11. G. I. Scott, P. B. Colligan, B. H. Ren, and J. Ren. Ginsenosides Rb1 and Re decrease cardiac contraction in adult rat ventricular myocytes: role of nitric oxide. Br. J. Pharmacol. 134:1159–1165 (2001).

    CAS  PubMed  Google Scholar 

  12. 12. Z. Q. Jin and C. M. Liu. Effect of ginsenoside Re on the electrophysiological activity of the heart. Planta Med. 60:192–193 (1994).

    CAS  PubMed  Google Scholar 

  13. 13. Z. Q. Jin. The action of ginsenoside Re on inotropy and chronotropy of isolated atria prepared from guinea pigs. Planta Med. 62:314–316 (1996).

    CAS  PubMed  Google Scholar 

  14. 14. S. Babaei and D. J. Stewart. Overexpression of endothelial NO synthase induces angiogenesis in a co-culture model. Cardiovas. Res. 55:190–200 (2002).

    CAS  Google Scholar 

  15. 15. Y. Chang, C. C. Tsai, H. C. Liang, and H. W. Sung. In vivo evaluation of cellular and acellular bovine pericardia fixed with a naturally occurring crosslinking agent (genipin). Biomaterials 23:2447–2457 (2002).

    CAS  PubMed  Google Scholar 

  16. 16. K. A. Hotchkiss, A. W. Ashton, R. Mahmood, R. G. Russell, J. A. Sparano, and E. L. Schwartz. Inhibition of endothelial cell function in vitro and angiogenesis in vivo by docetaxel (Taxotere): association with impaired repositioning of the microtubule organizing center. Mol. Cancer Ther. 1:1191–1200 (2002).

    CAS  PubMed  Google Scholar 

  17. 17. Y. Terai, M. Abe, K. Miyamoto, M. Koike, M. Yamasaki, M. Ueda, M. Ueki, and Y. Sato. Vascular smooth muscle cell growth-promoting factor/F-Spondin inhibits angiogenesis via the blockade of integrin αvβ3 on vascular endothelial cells. J. Cell. Physiol. 188:394–402 (2001).

    CAS  PubMed  Google Scholar 

  18. 18. H. Sakamoto, T. Mashima, A. Kizaki, S. Dan, Y. Hashimoto, M. Naito, and T. Tsuruo. Glyoxalase I is involved in resistance of human leukemia cells to antitumor agent-induced apoptosis. Blood 95:3214–3218 (2000).

    CAS  PubMed  Google Scholar 

  19. 19. F. Facchiano, A. Lentini, V. Fogliano, S. Mancarella, C. Rossi, A. Facchiano, and M. C. Capogrossi. Sugar-induced modification of fibroblast growth factor 2 reduces its angiogenic activity in vivo. Am. J. Pathol. 161:531–541 (2002).

    CAS  PubMed  Google Scholar 

  20. 20. D. E. Morales, K. A. McGowan, D. S. Grant, S. Maheshwari, D. Bhartiya, M. C. Cid, H. K. Kleinman, and H. W. Schnaper. Estrogen promotes angiogenic activity in human umbilical vein endothelial cells in vitro and in a murine model. Circulation 91:755–763 (1995).

    CAS  PubMed  Google Scholar 

  21. 21. O. H. Lee, Y. M. Kim, Y. M. Lee, E. J. Moon, D. J. Lee, J. H. Kim, K. W. Kim, and Y. G. Kwon. Sphingosine 1-phosphate induces angiogenesis: its angiogenic action and signaling mechanism in human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun. 264:743–750 (1999).

    CAS  PubMed  Google Scholar 

  22. 22. K. M. Malinda, L. Ponce, H. K. Kleinman, L. M. Shackelton, and A. J. T. Millis. Gp38k, a protein synthesized by vascular smooth muscle cells, stimulates directional migration of human umbilical vein endothelial cells. Exp. Cell Res. 250:168–173 (1999).

    CAS  PubMed  Google Scholar 

  23. 23. D. W. Courtman, C. A. Pereira, V. Kashef, and D. MicComb. Development of a pericardial acellular matrix biomaterial: Biochemical and mechanical effects of cell extraction. J. Biomed. Mater. Res. 28:655–666 (1994).

    CAS  PubMed  Google Scholar 

  24. 24. Y. Chang, M. H. Lee, H. C. Liang, C. K. Hsu, and H. W. Sung. Acellular bovine pericardia with distinct porous structures fixed with genipin as an extracellular matrix. Tissue Eng. 10:881–892 (2004).

    CAS  PubMed  Google Scholar 

  25. 25. H. W. Sung, Y. Chang, C. T. Chiu, C. N. Chen, and H. C. Liang. Crosslinking characteristics and mechanical properties of a bovine pericardium fixed with a naturally occurring crosslinking agent. J. Biomed. Mater. Res. 47:116–126 (1999).

    CAS  PubMed  Google Scholar 

  26. 26. I. Martin, V. P. Shastri, R. F. Padera, J. Yang, A. J. Mackay, R. Langer, G. Vunjak-Novakovic, and L. E. Freed. Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams. J. Biomed. Mater. Res. 55:229–235 (2001).

    CAS  PubMed  Google Scholar 

  27. 27. J. S. Pieper, T. Hafmans, P. B. van Wachem, M. J. A. van Luyn, L. A. Brouwer, J. H. Veerkamp, and T. H. van Kuppevelt. Loading of collagen-heparan sulfate matrices with bFGF promotes angiogenesis and tissue generation in rats. J. Biomed. Mater. Res. 62:185–194 (2002).

    CAS  PubMed  Google Scholar 

  28. 28. D. W. Courtman, B. F. Errett, and G. J. Wilson. The role of crosslinking in modification of the immune response elicited against xenogenic vascular acellular matrices. J. Biomed. Mater. Res. 55:576–586 (2001).

    CAS  PubMed  Google Scholar 

  29. 29. S. J. Bryant and K. S. Anseth. Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. J. Biomed. Mater. Res. 64A:70–79 (2003).

    CAS  Google Scholar 

  30. 30. A. Bader, T. Schiling, and O. E. Teebken. Tissue engineering of heart valves-human endothelial cell seeding of detergent acellularized porcine valves. Euro. J. Cardio. Thoracic. Sur. 14:279–284 (1998).

    CAS  Google Scholar 

  31. 31. Y. Tabata, M. Miyao, M. Yamamoto, and Y. Ikada. Vascularization into a porous sponge by sustained release of basic fibroblast growth factor. J. Biomater. Sci. Polymer Edn. 10:957–968 (1999).

    CAS  Google Scholar 

  32. 32. F. Esch, A. Baird, N. Ling, N. Ueno, F. Hill, L. Denoroy, R. Klepper, D. Gospodarowicz, P. Bohlen, and R. Guillemin. Primary structure of bovine pituitary basic fibroblast growth factor (FGF) and comparison with the amino-terminal sequence of bovine brain acidic FGF. Proc. Natl. Acad. Sci. USA 82:6507–6511 (1985).

    CAS  PubMed  Google Scholar 

  33. 33. D. B. Rifkin and D. Moscatelli. Structural characterization and biological functions of basic fibroblast growth factor. J. Cell Biol. 109:1 (1989).

    CAS  PubMed  Google Scholar 

  34. 34. D. S. Grant, P. I. Lelkes, K. Fukuda, and H. K. Kleinman. Intracellular mechanisms involved in basement membrane induced blood vessel differentiation in vitro. In Vitro Cell. Dev. Biol. 27A:327–336 (1991).

    CAS  PubMed  Google Scholar 

  35. 35. M. C. Kibbey, L. S. Royce, M. S. Dym, B. J. Baum, and H. K. Kleinman. Glandular morphogenesis of a human submandibular cell line by basement membrane components in vitro. Exp. Cell Res. 198:343–357 (1992).

    CAS  PubMed  Google Scholar 

  36. 36. K. A. Seely and J. Aggeler. Modulation of milk protein synthesis through alteration of the cytoskeleton in mouse mammary epithelial cells cultured on a reconstituted basement membrane. J. Cell. Physiol. 146:117–130 (1991).

    CAS  PubMed  Google Scholar 

  37. 37. M. Taub, Y. Wang, T. M. Szcesney, H. K. Kleinman, and G. R. Martin. Transforming growth factor alpha is required for kidney tubulogenesis in Matrigel cultures in serum-free medium. Proc. Natl. Acad. Sci. USA 87:4002–4006 (1990).

    CAS  PubMed  Google Scholar 

  38. 38. M. Presta, M. Beller, A. Vecchi, J. Hesselgesser, A. Mantovani, and R. Horuk. Noncompetitive, chemokine-mediated inhibition of basic fibroblast growth factor-induced endothelial cell proliferation. J. Biol. Chem. 273:7911–7919 (1998).

    CAS  PubMed  Google Scholar 

  39. 39. S. Sengupta, S. A. Toh, L. A. Sellers, J. N. Skepper, P. Koolwijk, H. W. Leung, H. W. Yeung, R. N. S. Wong, R. Sasisekharan, and T. P. Fan. Modulating angiogenesis: the yin and the yang in ginseng. Circulation 110:1219–1225 (2004).

    CAS  PubMed  Google Scholar 

  40. 40. T. Matsuda and Y. Nakayama. Surface microarchitectural design in biomedical applications: In vitro transmural endothelialization on microporous segmented polyurethane films fabricated using an excimer laser. J. Biomed. Mater. Res. 31:235–242 (1996).

    CAS  PubMed  Google Scholar 

  41. 41. S. Fujikawa, T. Yokota, K. Koga, and J. Kumada. The continuous hydrolysis of geniposide to genipin using immobilized β-glucosidase on calcium alginate gel. Biotechnol. Lett. 9:697–702 (1987).

    CAS  Google Scholar 

  42. 42. T. H. Tsai, J. Westly, T. F. Lee, and C. F. Chen. Identification and determination of geniposide, genipin, gardenoside, and geniposidic acid from herbs by HPLC/photodiode-array detection. J. Liq. Chromatogr. 17:2199–2205 (1944).

    Google Scholar 

  43. 43. T. Akao, K. Kobashi, and M. Aburada. Enzymatic studies on the animal and intestinal bacterial metabolism of geniposide. Biol. Pharm. Bull. 17:1573–1576 (1994).

    CAS  PubMed  Google Scholar 

  44. 44. H. W. Sung, R. N. Huang, L. L. H. Huang, C. C. Tsai, and C. T. Chiu. Feasibility study of a natural crosslinking reagent for biological tissue fixation. J. Biomed. Mater. Res. 42:560–567 (1998).

    CAS  PubMed  Google Scholar 

  45. 45. H. W. Sung, I. L. Liang, C. N. Chen, R. N. Huang, and H. F. Liang. Stability of a biological tissue fixed with a naturally occurring crosslinking agent (genipin). J. Biomed. Mater. Res. 55:538–546 (2001).

    CAS  PubMed  Google Scholar 

  46. 46. A. Perets, Y. Baruch, F. Weisbuch, G. Shoshany, G. Neufeld, and S. Cohen. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J. Biomed. Mater. Res. 65A:489–497 (2003).

    CAS  Google Scholar 

  47. 47. F. C. Westal, R. Rubin, and D. Gospodarowicz. Brain derived fibroblast growth factor: A study of its inactivation. Life Sci. 33:2425–2429 (1983).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsing-Wen Sung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, YC., Chen, CT., Chen, SC. et al. A Natural Compound (Ginsenoside Re) Isolated from Panax ginseng as a Novel Angiogenic Agent for Tissue Regeneration. Pharm Res 22, 636–646 (2005). https://doi.org/10.1007/s11095-005-2500-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-2500-3

Key words:

Navigation