Skip to main content
Log in

Influence of Cold Plasma in Accelerating the Germination and Nutrient Composition of Foxtail Millet (Setaria italica L.)

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Cold plasma (CP) has been used to accelerate seed germination. During this study, foxtail millet was exposed to low pressure air plasma at 1 kV and 2 kV for 1, 3, and 5 min, and its germination characteristics and nutrient composition were studied. Among the applied treatment conditions, 2 kV for 3 min showed a higher germination percentage of 84.00%, followed by 1 kV for 5 min with 77.33% after 48 h. In addition, a significant increase in other germination characteristics, such as germination speed, germination potential, seed length, and seed vigour indices I and II, was observed after CP exposure. Optical emission spectroscopy analysis asserted that reactive species generated during CP generation are responsible for hastening the foxtail millet germination through seed surface modification. Further, the CP exposure increased the soluble protein content of foxtail millet up to 19.00 g/100 g, γ-amino butyric acid content up to 62.27 mg/100 g, and reduced phytic acid and tannins to 1.1 mg/g and 0.8 mg/100 g, respectively, through germination. This research explores the potency of cold plasma in accelerating foxtail millet germination and enhancing its nutritional bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data supporting this study's findings are available on request from the corresponding author.

References

  1. UN, “International Year of Millets 2023 - Building momentum for the year,” UN, 2022

  2. Sharma N, Goyal SK, Alam T, Fatma S, Chaoruangrit A, Niranjan K (2018) Effect of high pressure soaking on water absorption, gelatinization, and biochemical properties of germinated and non-germinated foxtail millet grains. J Cereal Sci 83:162–170. https://doi.org/10.1016/j.jcs.2018.08.013

    Article  CAS  Google Scholar 

  3. Nazni P, Shobana Devi R (2016) Effect of processing on the characteristics changes in barnyard and foxtail millet. J Food Process Technol. https://doi.org/10.4172/2157-7110.1000566

    Article  Google Scholar 

  4. Bhuvaneshwari G, Nirmalakumari A, Kalaiselvi S (2020) Impact of soaking, sprouting on antioxidant and anti-nutritional factors in milletgrains. J Phytol 12:62–66. https://doi.org/10.25081/jp.2020.v12.6384

    Article  CAS  Google Scholar 

  5. Sharma K, Rok Lee Y, Park SW, Nile SH (2016) Importance of growth hormones and temperature for physiological regulation of dormancy and sprouting in onions. Food Rev Int 32(3):233–255. https://doi.org/10.1080/87559129.2015.1058820

    Article  CAS  Google Scholar 

  6. Elliott H, Woods P, Green BD, Nugent AP (2022) Can sprouting reduce phytate and improve the nutritional composition and nutrient bioaccessibility in cereals and legumes? Nutr Bull 47(2):138–156. https://doi.org/10.1111/nbu.12549

    Article  PubMed  Google Scholar 

  7. Lemmens E et al (2018) Impact of cereal seed sprouting on its nutritional and technological properties: a critical review. Compr Rev Food Sci Food Saf. https://doi.org/10.1111/1541-4337.12414

    Article  PubMed  Google Scholar 

  8. Dong X et al (2022) The effect of ozone treatment on metabolite profile of germinating barley. Foods 11(9):1211. https://doi.org/10.3390/foods11091211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deore A, Athmaselvi KA, Venkatachalapathy N (2023) Effect of ultrasound and microwave pretreatment on sprouting, GABA, bioactive compounds, and other physicochemical properties of sorghum. Grain Oil Sci Technol. https://doi.org/10.1016/j.gaost.2023.02.002

    Article  Google Scholar 

  10. Wu T, Li H, Li J, Hao J (2023) Nutrient composition of germinated foxtail millet flour treated with mixed salt solution and slightly acidic electrolyzed water. Foods. https://doi.org/10.3390/foods12010075

  11. Dharini M, Jaspin S, Mahendran R (2023) Cold plasma reactive species: generation, properties, and interaction with food biomolecules. Food Chem 405(PA):134746. https://doi.org/10.1016/j.foodchem.2022.134746

    Article  CAS  PubMed  Google Scholar 

  12. Ratish Ramanan K, Sarumathi R, Mahendran R (2018) Influence of cold plasma on mortality rate of different life stages of Tribolium castaneum on refined wheat flour. J Stored Prod Res 77:126–134. https://doi.org/10.1016/j.jspr.2018.04.006

    Article  Google Scholar 

  13. Rifna EJ, Ratish Ramanan K, Mahendran R (2019) Emerging technology applications for improving seed germination. Trends Food Sci Technol 86:95–108. https://doi.org/10.1016/j.tifs.2019.02.029

    Article  CAS  Google Scholar 

  14. Rajan A, Boopathy B, Radhakrishnan M, Rao L, Schlüter OK, Tiwari BK (2023) Plasma processing: a sustainable technology in agri-food processing. Sustain Food Technol 1(1):9–49. https://doi.org/10.1039/D2FB00014H

    Article  CAS  Google Scholar 

  15. Anbarasan R, Jaspin S, Bhavadharini B, Pare A, Pandiselvam R, Mahendran R (2022) Chlorpyrifos pesticide reduction in soybean using cold plasma and ozone treatments. LWT 159:113193. https://doi.org/10.1016/j.lwt.2022.113193

    Article  CAS  Google Scholar 

  16. Shashikanthalu SP, Ramireddy L, Radhakrishnan M (2020) Stimulation of the germination and seedling growth of Cuminum cyminum L. seeds by cold plasma. J Appl Res Med Aromat Plants 18(February):100259. https://doi.org/10.1016/j.jarmap.2020.100259

    Article  Google Scholar 

  17. Sadhu S, Thirumdas R, Deshmukh RR, Annapure US (2017) Influence of cold plasma on the enzymatic activity in germinating mung beans (Vigna radiate). LWT 78:97–104. https://doi.org/10.1016/j.lwt.2016.12.026

    Article  CAS  Google Scholar 

  18. Markwell MAK, Haas SM, Bieber LL, Tolbert NE (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87(1):206–210. https://doi.org/10.1016/0003-2697(78)90586-9

    Article  CAS  PubMed  Google Scholar 

  19. Sharma S, Saxena DC, Riar CS (2018) Changes in the GABA and polyphenols contents of foxtail millet on germination and their relationship with in vitro antioxidant activity. Food Chem 245(September):863–870. https://doi.org/10.1016/j.foodchem.2017.11.093

    Article  CAS  PubMed  Google Scholar 

  20. Fekadu Gemede H (2014) Antinutritional factors in plant foods: potential health benefits and adverse effects. Int J Nutr Food Sci 3(4):284. https://doi.org/10.11648/j.ijnfs.20140304.18

    Article  Google Scholar 

  21. Dekka S, Paul A, Vidyalakshmi R, Mahendran R (2023) Potential processing technologies for utilization of millets: an updated comprehensive review. J Food Process Eng. https://doi.org/10.1111/jfpe.14279

    Article  Google Scholar 

  22. Sharma N, Niranjan K (2018) Foxtail millet: properties, processing, health benefits, and uses. Food Rev Int 34(4):329–363. https://doi.org/10.1080/87559129.2017.1290103

    Article  CAS  Google Scholar 

  23. Lokeswari R, Sharanyakanth PS, Mahendran R (2021) Combination of air plasma bubbling and soaking in the reduction of phytic acid and improving free iron availability in pearl millet. Int J Chem Stud 9(1):1041–1045. https://doi.org/10.22271/chemi.2021.v9.i1o.11361

    Article  Google Scholar 

  24. Bate-Smith EC, Rašper V (1969) Tannins of grain sorghum: luteoforol (Leucoluteolinidin), 3’,4,4’,5,7-pentahydroxyflavan. J Food Sci 34(2):203–209. https://doi.org/10.1111/j.1365-2621.1969.tb00919.x

    Article  CAS  Google Scholar 

  25. Anbarasan R, Boopathy B, Stephen J, Radhakrishnan M (2023) Cold plasma disinfestation of Callosobruchus maculatus infested soybeans: its subsequent impact on soymilk extraction yield and quality. J Food Process Eng. https://doi.org/10.1111/jfpe.14246

    Article  Google Scholar 

  26. Meng Y, Qu G, Wang T, Sun Q, Liang D, Hu S (2017) Enhancement of germination and seedling growth of wheat seed using dielectric barrier discharge plasma with various gas sources. Plasma Chem Plasma Process 37(4):1105–1119. https://doi.org/10.1007/s11090-017-9799-5

    Article  CAS  Google Scholar 

  27. Los A, Ziuzina D, Boehm D, Cullen PJ, Bourke P (2019) Investigation of mechanisms involved in germination enhancement of wheat (Triticum aestivum) by cold plasma: effects on seed surface chemistry and characteristics. Plasma Process Polym 16(4):1800148. https://doi.org/10.1002/ppap.201800148

    Article  CAS  Google Scholar 

  28. Bormashenko E, Grynyov R, Bormashenko Y, Drori E (2012) Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. Sci Rep 2(1):741. https://doi.org/10.1038/srep00741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Billah M et al (2020) Effects of DBD air plasma treatment on the enhancement of black gram (Vigna mungo L.) seed germination and growth. Arch Biochem Biophys 681:108253. https://doi.org/10.1016/j.abb.2020.108253

    Article  CAS  PubMed  Google Scholar 

  30. Signorelli S, Considine MJ (2018) Nitric oxide enables germination by a four-pronged attack on ABA-induced seed dormancy. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00296

    Article  PubMed  PubMed Central  Google Scholar 

  31. Štěpánová V et al (2018) Atmospheric pressure plasma treatment of agricultural seeds of cucumber (Cucumis sativus L.) and pepper (Capsicum annuum L.) with effect on reduction of diseases and germination improvement. Plasma Process Polym 15(2):1700076. https://doi.org/10.1002/ppap.201700076

    Article  CAS  Google Scholar 

  32. Zargarchi S, Saremnezhad S (2019) Gamma-aminobutyric acid, phenolics and antioxidant capacity of germinated indica paddy rice as affected by low-pressure plasma treatment. LWT 102:291–294. https://doi.org/10.1016/j.lwt.2018.12.014

    Article  CAS  Google Scholar 

  33. Puač N, Petrović ZL, Živković S, Giba Z, Grubišić D, Đorđević AR (2005) Low-temperature plasma treatment of dry empress-tree seeds. Plasma processes and polymers. FRG: Wiley, Weinheim

    Google Scholar 

  34. Maguire JD (1962) Speed of germination: aid in selection and evaluation for seedling emergence and vigor. Crop Sci 2:176–177

    Article  Google Scholar 

  35. Bormashenko E, Shapira Y, Grynyov R, Whyman G, Bormashenko Y, Drori E (2015) Interaction of cold radiofrequency plasma with seeds of beans (Phaseolus vulgaris). J Exp Bot 66(13):4013–4021. https://doi.org/10.1093/jxb/erv206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pérez-Pizá MC et al (2019) Improvement of growth and yield of soybean plants through the application of non-thermal plasmas to seeds with different health status. Heliyon 5(4):e01495. https://doi.org/10.1016/j.heliyon.2019.e01495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dobrynin D, Fridman G, Friedman G, Fridman A (2009) Physical and biological mechanisms of direct plasma interaction with living tissue. New J Phys 11(11):115020. https://doi.org/10.1088/1367-2630/11/11/115020

    Article  CAS  Google Scholar 

  38. Li Y et al (2017) Air atmospheric dielectric barrier discharge plasma induced germination and growth enhancement of wheat seed. Plasma Chem Plasma Process 37(6):1621–1634. https://doi.org/10.1007/s11090-017-9835-5

    Article  CAS  Google Scholar 

  39. Ling L et al (2015) Effects of cold plasma treatment on seed germination and seedling growth of soybean. Sci Rep 4(1):5859. https://doi.org/10.1038/srep05859

    Article  CAS  Google Scholar 

  40. Švubová R, Kyzek S, Medvecká V, Slováková Ľ, Gálová E, Zahoranová A (2020) Novel insight at the effect of cold atmospheric pressure plasma on the activity of enzymes essential for the germination of pea (Pisum sativum L. cv. Prophet) seeds. Plasma Chem Plasma Process 40(5):1221–1240. https://doi.org/10.1007/s11090-020-10089-9

    Article  CAS  Google Scholar 

  41. Chou YJ, Cheng KC, Hsu FC, Wu JSB, Ting Y (2021) Producing high quality mung bean sprout using atmospheric cold plasma treatment: better physical appearance and higher γ-aminobutyric acid (GABA) content. J Sci Food Agric 101(15):6463–6471. https://doi.org/10.1002/jsfa.11317

    Article  CAS  PubMed  Google Scholar 

  42. Li R, Li ZJ, Wu NN, Tan B (2023) The effect of cold plasma pretreatment on GABA, γ-oryzanol, phytic acid, phenolics, and antioxidant capacity in brown rice during germination. Cereal Chem 100(2):321–332. https://doi.org/10.1002/cche.10609

    Article  CAS  Google Scholar 

  43. Chemspider P and Chebi U (1903) Phytic acid. vol 9025, no 2001, pp 1–35

  44. Sarkar A, Niranjan T, Patel G, Kheto A, Tiwari BK, Dwivedi M (2023) Impact of cold plasma treatment on nutritional, antinutritional, functional, thermal, rheological, and structural properties of pearl millet flour. J Food Process Eng. https://doi.org/10.1111/jfpe.14317

    Article  Google Scholar 

  45. Di Y et al (2022) Impact of germination on structural, functional properties and in vitro protein digestibility of sesame (Sesamum indicum L.) protein. LWT 154:112651. https://doi.org/10.1016/j.lwt.2021.112651

    Article  CAS  Google Scholar 

  46. Šerá B, Šerý M, Zahoranová A, Tomeková J (2020) Germination improvement of three pine species (Pinus) after diffuse coplanar surface barrier discharge plasma treatment. Plasma Chem Plasma Process. https://doi.org/10.1007/s11090-020-10128-5

    Article  Google Scholar 

  47. Kaur H (2020) Changes in physicochemical, nutritional characteristics and ATR–FTIR molecular interactions of cereal grains during germination. J Food Sci Technol. https://doi.org/10.1007/s13197-020-04742-6

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research work was funded by the National Institute of Food Technology, Entrepreneurship, and Management -Thanjavur (Institute Millet Project -001), India.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MV—Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Software; Validation; Visualization; Writing—original draft; AR—Data curation; Formal analysis; Visualization; MR—Conceptualization; Funding acquisition; Project administration; Resources; Supervision; Visualization; Validation; Writing—review & editing.

Corresponding author

Correspondence to R. Mahendran.

Ethics declarations

Conflict of interest

The authors have declared no conflicts of interest in this article.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 102 KB)

Supplementary file2 (PDF 176 KB)

Supplementary file3 (MP4 31212 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monica, V., Anbarasan, R. & Mahendran, R. Influence of Cold Plasma in Accelerating the Germination and Nutrient Composition of Foxtail Millet (Setaria italica L.). Plasma Chem Plasma Process 43, 1843–1861 (2023). https://doi.org/10.1007/s11090-023-10368-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-023-10368-1

Keywords

Navigation