Skip to main content

Advertisement

Log in

Effects of Air/H2O Discharge Plasma on Propane Combustion Enhancement Using Dielectric Barrier Discharges

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Combustion provides about 80% energy for our daily life and industrial production. But thermal efficiency of traditional combustion technologies is low, which causes energy waste and serious environmental pollution. In order to improve the combustion efficiency, a combined method based on non-equilibrium plasma generated by dielectric barrier discharge and OH radicals coming from water-steam additive was proposed in this work, and plasma assisted propane combustion was examined and evaluated. The results indicated that when relative humidity (RH) was 20% and applied peak voltage was fixed at 8.75 kV, the relative intensity of OH radical and the flame temperature reached the maximum value at the flame root. At the same time, propane combustion was the most complete. In addition, we found that the erosion of the inner electrode was weakened by H2O addition, and the symmetry of discharge current was changed from symmetry to asymmetry with the increase of RH. Compared with the pure air undischarged combustion, when the relative humidity was 20% and under the discharge conditions of 8.75 kV, the lean-burn extinction limit was extended to 0.4,which is far lower than the traditional lean-burn limit (0.51).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Turns SR (2015) An introduction to combustion: concepts and applications, 3rd edn. McGraw-Hill Education and Tsinghua University Press, Beijing

    Google Scholar 

  2. Ju Y, Sun W (2015) Plasma assisted combustion: dynamics and chemistry. Prog Energy Combust Sci 48:21–83. https://doi.org/10.1016/j.pecs.2014.12.002

    Article  Google Scholar 

  3. Pilla G, Galley D, Lacoste DA, Lacas F, Veynante D, Laux CO (2006) Stabilization of a turbulent premixed flame using a nanosecond repetitively pulsed plasma. IEEE Trans Plasma Sci 34:2471–2477

    Article  CAS  Google Scholar 

  4. Guo H, Smallwood GJ, Liu F, Ju Y, Gülder ÖL (2005) The effect of hydrogen addition on flammability limit and NOx emission in ultra-lean counterflow CH4/air premixed flames. Proc Combust Inst 30(1):303–311. https://doi.org/10.1016/j.proci.2004.08.177

    Article  CAS  Google Scholar 

  5. Shiraishi T, Kakuho A, Urushihara T, Cathey C (2009) A study of volumetric ignition using high-speed plasma for improving lean combustion performance in internal combustion engines. SAE Int J Eng 1:399–408

    Article  Google Scholar 

  6. Giorgi MGD, Sciolti A, Campilongo S, Pescini E, Ficarella A, Martini LM, Tosi P, Dilecce G (2015) Plasma assisted flame stabilizationin a non-premixed lean burner. Energy Proc 82(410–416):410–416. https://doi.org/10.1016/j.egypro.2015.11.825

    Article  CAS  Google Scholar 

  7. Varella RA, Sagás JC, Martins CA (2016) Effects of plasma assisted combustion on pollutant emissions of a premixed flame of natural gas and air. Fuel 184:269–276. https://doi.org/10.1016/j.fuel.2016.07.031

    Article  CAS  Google Scholar 

  8. Starikovskiy A, Aleksandrov N (2011) Plasma-assisted ignition and combustion. InTech 39:61–110

    Google Scholar 

  9. Li H-Y, Huang P-H, Chao Y-C (2016) Flame enhancement by microwave-induced plasma: the role of major Bath gas N2 Versus Ar. Combust Sci Technol 188(11–12):1831–1843. https://doi.org/10.1080/00102202.2016.1215104

    Article  CAS  Google Scholar 

  10. Sekiguchi H, Mori Y (2003) Steam plasma reforming using microwave discharge. Thin Solid Films 435(1–2):44–48. https://doi.org/10.1016/s0040-6090(03)00379-1

    Article  CAS  Google Scholar 

  11. Moon SY, Choe W, Kang BK (2004) A uniform glow discharge plasma source at atmospheric pressure. Appl Phys Lett 84(2):188–190. https://doi.org/10.1063/1.1639135

    Article  CAS  Google Scholar 

  12. Kovačević VV, Dojčinović BP, Jović M, Roglić GM, Obradović BM, Kuraica MM (2017) Measurement of reactive species generated by dielectric barrier discharge in direct contact with water in different atmospheres. J Phys D Appl Phys 50(15):155205. https://doi.org/10.1088/1361-6463/aa5fde

    Article  CAS  Google Scholar 

  13. Tang J, Zhao W, Duan Y (2010) In-depth study on propane–air combustion enhancement with dielectric barrier discharge. IEEE Trans Plasma Sci 38(12):3272–3281

    Article  CAS  Google Scholar 

  14. Tang J, Zhao W, Duan J, Duan Y (2011) Nonequilibrium plasmas generated by dielectric barrier discharges at atmospheric pressure. IEEE Trans Plasma Sci 39:2080–2081

    Article  CAS  Google Scholar 

  15. Tang J, Zhao W, Duan Y (2011) Some observations on plasma-assisted combustion enhancement using dielectric barrier discharges. Plasma Sources Sci Technol 20(4):045009. https://doi.org/10.1088/0963-0252/20/4/045009

    Article  CAS  Google Scholar 

  16. Kang Y, Wu Z (2008) Formation of hydroxyl radicals and oxidation of toluene under corona discharge with water vapor as radical source. Sci Bull 53(14):2248–2252. https://doi.org/10.1007/s11434-008-0292-7

    Article  CAS  Google Scholar 

  17. Starikovskii AY (2005) Plasma supported combustion. Proc Combust Inst 30(2):2405–2417. https://doi.org/10.1016/j.proci.2004.08.272

    Article  CAS  Google Scholar 

  18. Das AK, Kumar K, Sung C-J (2011) Laminar flame speeds of moist syngas mixtures. Combust Flame 158(2):345–353. https://doi.org/10.1016/j.combustflame.2010.09.004

    Article  CAS  Google Scholar 

  19. Santner J, Dryer FL, Ju Y (2013) The effects of water dilution on hydrogen, syngas, and ethylene flames at elevated pressure. Proc Combust Inst 34(1):719–726. https://doi.org/10.1016/j.proci.2012.06.065

    Article  CAS  Google Scholar 

  20. Wang P, Zhao Y, Chen Y, Bao L, Meng S, Sun S (2017) Study on the lower flammability limit of H2/CO in O2/H2O environment. Int J Hydrogen Energy 42(16):11926–11936. https://doi.org/10.1016/j.ijhydene.2017.02.143

    Article  CAS  Google Scholar 

  21. Xie Y, Wang J, Xu N, Yu S, Huang Z (2014) Comparative study on the effect of CO2 and H2O dilution on laminar burning characteristics of CO/H2/air mixtures. Int J Hydrogen Energy 39(7):3450–3458. https://doi.org/10.1016/j.ijhydene.2013.12.037

    Article  CAS  Google Scholar 

  22. Su Z-Z, Ito K, Takashima K, Katsura S, Onda K, Mizuno A (2002) OH radical generation by atmospheric pressure pulsed discharge plasma and its quantitative analysis by monitoring CO oxidation. J Phys D Appl Phys 35:3192–3198

    Article  CAS  Google Scholar 

  23. Larionov VM, Mitrofanov GA, Sachovskii AV, Kozar NK (2016) Mechanism of influence water vapor on combustion characteristics of propane–air mixture. J Phys Conf Ser 669:012041. https://doi.org/10.1088/1742-6596/669/1/012041

    Article  CAS  Google Scholar 

  24. Higgins B, McQuay MQ, Lacas F, Rolon JC, Darabiha N, Candel S (2001) Systematic measurements of OH chemiluminescence for fuel-lean, high-pressure, premixed, laminar flames. Fuel 80:67–74

    Article  CAS  Google Scholar 

  25. Sun M, Wu Y (2005) Diagnosis of OH radical by optical emission spectroscopy in atmospheric pressure unsaturated humid air corona discharge and its implication to desulphurization of flue gas. Plasma Chem Plasma Process 25:31–40

    Article  CAS  Google Scholar 

  26. Yan W, Jie L, Ninghui W, Guofeng L, Dexuan X (2001) Study on increasing the SO2 removal efficiency with the radicals produced by H2O in pulse discharge plasma process. Jpn J Appl Phys 40:838–840

    Article  Google Scholar 

  27. Rosocha LA, Coates DM, Platts D, Stange S (2004) Plasma-enhanced combustion of propane using a silent discharge. Phys Plasmas 11(5):2950–2956. https://doi.org/10.1063/1.1688788

    Article  CAS  Google Scholar 

  28. Yao S, Weng S, Tang Y, Zhao C, Wu Z, Zhang X, Yamamoto S, Kodama S (2016) Characteristics of OH production by O2/H2O pulsed dielectric barrier discharge. Vacuum 126:16–23. https://doi.org/10.1016/j.vacuum.2016.01.005

    Article  CAS  Google Scholar 

  29. Dai D, Wang Q, Hao Y (2013) Experimental study on asymmetrical period-one discharge in dielectric barrier discharge in helium at atmospheric pressure. Acta Phys Sin 62:13

    Google Scholar 

  30. Falkenstein Z, Coogan JJ (1997) Microdischarge behaviour in the silent discharge of nitrogen–oxygen and water–air mixtures. J Phys D Appl Phys 30:817–825

    Article  CAS  Google Scholar 

  31. Xu J, Li C, Zhan H, Li M (2008) Effect of electrode structure on dielectric barrier discharge in air. High Volt Appar 44(2):132–138. https://doi.org/10.13296/j.1001-1609.hva.2008.02.006

    Article  Google Scholar 

  32. Zhang F, Sun Y (2017) Dielectric barrier discharge model study of parallel plate electrodes considering wall charge accumulation. Insul Mater 50(11):50–53. https://doi.org/10.16790/j.cnki.1009-9239.im.2017.11.010

    Article  Google Scholar 

  33. Ding W, He L, Lan Y (2010) Influence of accumulated charges on characteristic of dielectric barrier discharge. High Volt Eng 36(2):456–460. https://doi.org/10.13336/J.1003-6520.HVE.2010.02.002

    Article  Google Scholar 

  34. Zhang Y, Wang D, Kong MG (2006) Complex dynamic behaviors of nonequilibrium atmospheric dielectric-barrier discharges. J Appl Phys. https://doi.org/10.1063/1.2345463

    Article  Google Scholar 

  35. Yan P, Shao T (2015) Atmospheric pressure gas discharge and its plasma applications. The Science Publishing Company, Beijing

    Google Scholar 

  36. Zhang L, Wang B, Dang W (2008) Excited dissociation kinetics of H2O by pulsed streamer discharge. Acta Phys Chim Sin 24:1524–1528

    CAS  Google Scholar 

  37. Ono R, Oda T (2003) Dynamics of ozone and OH radicals generated by pulsed corona discharge in humid-air flow reactor measured by laser spectroscopy. J Appl Phys 93(10):5876–5882. https://doi.org/10.1063/1.1567796

    Article  CAS  Google Scholar 

  38. Gokulakrishnan P, Fuller CC, Klassen MS, Joklik RG, Kochar YN, Vaden SN, Lieuwen TC, Seitzman JM (2014) Experiments and modeling of propane combustion with vitiation. Combust Flame 161(8):2038–2053. https://doi.org/10.1016/j.combustflame.2014.01.024

    Article  CAS  Google Scholar 

  39. Kornev J, Yavorovsky N, Preis S, Khaskelberg M, Isaev U, Chen BN (2006) Generation of active oxidant species by pulsed dielectric barrier discharge in water–air mixtures. Ozone Sci Eng 28(4):207–215. https://doi.org/10.1080/01919510600704957

    Article  CAS  Google Scholar 

  40. Oda T (2003) Non-thermal plasma processing for environmental protection: decomposition of dilute VOCs in air. J Electrost 57(3):293–311. https://doi.org/10.1016/S0304-3886(02)00179-1

    Article  CAS  Google Scholar 

  41. Nishiyama H, Takana H, Niikura S, Shimizu H, Furukawa D, Nakajima T, Katagiri K, Nakano Y (2008) Characteristics of ozone jet generated by dielectric-barrier discharge. IEEE Trans Plasma Sci 36(4):1328–1329. https://doi.org/10.1109/TPS.2008.924403

    Article  CAS  Google Scholar 

  42. Marques CS, Benvenutti LH, Bertran CA (2001) Experimental study of OH*, CHO*, CH*, and C2* radicals in C2H2/O2 and C2H2/O2/Ar flames in a closed chamber. Combust Sci Technol 167(1):113–129. https://doi.org/10.1080/00102200108952179

    Article  CAS  Google Scholar 

  43. Docquier N, Candel S (2002) Combustion control and sensors: a review. Prog Energy Combust Sci 28(2):107–150

    Article  CAS  Google Scholar 

  44. Marques CST, Benvenutti LH, Bertran CA (2006) Kinetic modeling for chemiluminescent radicals in acetylene combustion. J Braz Chem Soc 17(2):302–315. https://doi.org/10.1590/s0103-50532006000200013

    Article  CAS  Google Scholar 

  45. Ju Y, Lefkowitz JK, Reuter CB, Won SH, Yang X, Yang S, Sun W, Jiang Z, Chen Q (2015) Plasma assisted low temperature combustion. Plasma Chem Plasma Process 36(1):85–105. https://doi.org/10.1007/s11090-015-9657-2

    Article  CAS  Google Scholar 

  46. Park S-L, Moon J-D, Lee S-H, Shin S-Y (2006) Effective ozone generation utilizing a meshed-plate electrode in a dielectric-barrier discharge type ozone generator. J Electrost 64(5):275–282. https://doi.org/10.1016/j.elstat.2005.06.007

    Article  CAS  Google Scholar 

  47. Simek M, Clupek M (2002) Efficiency of ozone production by pulsed positive corona discharge in synthetic air. J Phys D Appl Phys 35:1171–1175. https://doi.org/10.1088/0022-3727/35/11/311

    Article  CAS  Google Scholar 

  48. Yamamoto Y, Tachibana T (2016) Feasibility study of water plasma jets for combustion promotion. Fuel 186:846–852. https://doi.org/10.1016/j.fuel.2016.09.020

    Article  CAS  Google Scholar 

  49. De Giorgi MG, Ficarella A, Sciolti A, Pescini E, Campilongo S, Di Lecce G (2017) Improvement of lean flame stability of inverse methane/air diffusion flame by using coaxial dielectric plasma discharge actuators. Energy 126:689–706. https://doi.org/10.1016/j.energy.2017.03.048

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editors and anonymous reviewers for their careful work and thoughtful suggestions that have helped improve this paper substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixiang Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Niu, G., Wang, X. et al. Effects of Air/H2O Discharge Plasma on Propane Combustion Enhancement Using Dielectric Barrier Discharges. Plasma Chem Plasma Process 38, 831–850 (2018). https://doi.org/10.1007/s11090-018-9896-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-018-9896-0

Keywords

Navigation