Skip to main content
Log in

Characterization of an Air-Based Coaxial Dielectric Barrier Discharge Plasma Source for Biofilm Eradication

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Air-based atmospheric-pressure cold plasmas are a source of charged particles, excited species, radicals, and UV rays, known to induce degradation of biomaterials. In this work we characterize an air-based Dielectric Barrier Discharge plasma source designed for biofilm eradication, and study plasmas generated under different conditions by Optical Emission Spectroscopy. The main excited species in air-based plasmas are N2 (C3Πu) molecules and the gas temperatures never exceed 335 K, decreasing as air amounts increase in the feeding gas. Excited oxygen atoms and OH species are only detected in discharges generated in argon-containing gases. The temperature of the effluent remains below 308 K. Air-based plasmas are useful for biofilm eradication as they produce high amounts of ozone at a low gas temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Weltmann KD, von Woedtke T (2016) Plasma Phys Control Fusion 59:014031

    Article  Google Scholar 

  2. Gay-Mimbrera J, García MC, Isla-Tejera B, Rodero-Serrano A, Vélez García-Nieto A, Ruano J (2016) Adv Ther 33:894–909

    Article  CAS  Google Scholar 

  3. Stoffels E, Roks AJM, Deelman LE (2008) Plasma Process Polym 5:599–605

    Article  CAS  Google Scholar 

  4. Barekzi N, Laroussi M (2013) Plasma Process Polym 10:1039–1050

    Article  CAS  Google Scholar 

  5. Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A (2008) Plasma Process Polym 5:503–533

    Article  CAS  Google Scholar 

  6. von Woedtke Th, Reuter S, Masur K, Weltmann KD (2013) Phys Rep 530:291–320

    Article  Google Scholar 

  7. Graves DB (2012) J Phys D Appl Phys 18:263001

    Article  Google Scholar 

  8. Menashi WP (1968) US Patent 3.383.163

  9. Moisan M, Barbeau J, Moreau S, Pelletier J, Tabrizian M, Yahia LH (2001) Int J Pharm 226:1–21

    Article  CAS  Google Scholar 

  10. Laroussi M (2002) IEEE Trans Plasma Sci 30:1409–1415

    Article  CAS  Google Scholar 

  11. Farr SB, Kogoma T (1991) Microbiol Rev 55:561–585

    CAS  Google Scholar 

  12. Poole RK (2005) Biochem Soc Trans 33:176–180

    Article  CAS  Google Scholar 

  13. Brelles-Mariño G (2012) J Bioprocess Biotech 2:4

    Google Scholar 

  14. Brandenburg R (2017) Plasma Sources Sci Technol 26:053001

    Article  Google Scholar 

  15. Abramzon N, Joaquin JC, Bray JD, Brelles-Mariño G (2006) IEEE Trans Plasma Sci 34:1304–1309

    Article  CAS  Google Scholar 

  16. Becker K, Koutsospyros A, Yin SM, Christodoulatos C, Abramzon N, Joaquin JC, Brelles-Mariño G (2005) Plasma Phys Control Fusion 47:B513–B523

    Article  CAS  Google Scholar 

  17. Joaquin J, Kwan C, Abramzon N, Vandervoort K, Brelles-Mariño G (2009) Microbiology 17:724–732

    Article  Google Scholar 

  18. Zelaya A, Stough G, Rad N, Vandervoort K, Brelles-Mariño G (2010) IEEE Trans Plasma Sci 38:3398–3403

    Article  CAS  Google Scholar 

  19. Zelaya A, Vandervoort K, Brelles-Mariño G (2012) In: Machala Z, Hensel K, Akishev Y (eds) Plasma for bio-decontamination, medicine and food security. NATO science for peace and security series A. Springer, Dordrecht (Chapter 11)

    Google Scholar 

  20. Vandervoort KG, Brelles-Mariño G (2014) PLoS ONE 9:e108512

    Article  Google Scholar 

  21. Soler-Arango J, Xaubet M, Giuliani L, Grondona D, Brelles-Mariño G (2017) Plasma Med 7:43–63

    Article  Google Scholar 

  22. Pearse RWB, Gaydon AG (1963) The identification of molecular spectra, 3rd edn. Wiley, Hoboken

    Google Scholar 

  23. Kogelschatz U (2003) Plasma Chem Plasma Process 23:1–46

    Article  CAS  Google Scholar 

  24. Kramida A, Ralchenko Y, Reader J (2016) NIST ASD Team NIST Atomic Spectra Database (version 5.4) (Online). National Institute of Standards and Technology, Gaithersburg, MD. http://physics.nist.gov/asd. Accessed 12 Jan 2017

  25. Lu X, Naidis GV, Laroussi M, Reuter S, Graves DB, Ostrikov K (2016) Phys Rep 630:1–84

    Article  CAS  Google Scholar 

  26. Sankaranarayanan R, Pashaie B, Dhali SK (2000) Appl Phys Lett 77:2970–2972

    Article  CAS  Google Scholar 

  27. Li L, Nikiforov A, Xiong Q, Britun N, Snyders R, Lu X, Leys C (2013) Phys Plasmas 20:093502

    Article  Google Scholar 

  28. Yu QS, Yasuda HK (1998) Plasma Chem Plasma Process 18:461–485

    Article  CAS  Google Scholar 

  29. Britun N, Gaillard M, Ricard A, Kim YM, Kim KS, Han JG (2007) J Phys D Appl Phys 40:1022–1029

    Article  CAS  Google Scholar 

  30. García MC, Varo M, Martínez P (2010) Plasma Chem Plasma Process 3:241–255

    Article  Google Scholar 

  31. Voráč J, Synek P, Potočňáková L, Hnilica J, Kudrle V (2017) Plasma Sources Sci Technol 26:025010

    Article  Google Scholar 

  32. Voráč J, Synek P, Procházka V, Hoder T (2017) J Phys D Appl Phys 50:294002

    Article  Google Scholar 

  33. Rodero A, García MC (2017) J Quant Spectrosc Radiat Transf 198:93–103

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank the European Regional Development Funds program (EU-FEDER) and the MINECO (Project MAT2016-79866-R) for financial support. Authors are also grateful to the Física de Plasmas: Diagnosis, Modelos y Aplicaciones (FQM 136) research group of Regional Government of Andalusia for technical and financial support. Authors also acknowledge Prof. Lourdes Arce for her scientific and technical support with ozone determination. Authors acknowledge Dr. Diana Grondona and Dr. Leandro Giuliani (INFIP, UBA-CONICET) for providing the plasma device and Dr. Manuel Torres for his technical support. Juliana Soler-Arango is indebted to Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina, and Asociación Universitaria Iberoamericana de Posgrado (AUIP), Spain, for fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria C. Garcia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soler-Arango, J., Brelles-Mariño, G., Rodero, A. et al. Characterization of an Air-Based Coaxial Dielectric Barrier Discharge Plasma Source for Biofilm Eradication. Plasma Chem Plasma Process 38, 535–556 (2018). https://doi.org/10.1007/s11090-018-9877-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-018-9877-3

Keywords

Navigation