Skip to main content
Log in

Nitrogen Fixation and NO Conversion using Dielectric Barrier Discharge Reactor: Identification and Evolution of Products

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The recombination (synthesis and conversion) of nitric oxide was investigated using dielectric barrier discharge reactor at atmospheric pressure. In this work, products identification and its evolution of different gas components have been studied. In the NO/O2/N2 systems, nitric oxide (NO) can be removed via chemical oxidation and chemical reduction, and corresponding products are NO2 and N2, respectively. In the O2/N2 systems, N2O5 producing from the interaction of NO3 with NO2 was also observed. There is an optimum SED at which the highest NOx yield and best NO conversion efficiency will be achieved. In the H2O/O2/N2 systems, the formation of NO2, HNO2 and HNO3 were observed in both NF and NO conversion. The N2O molecule, as a byproduct of plasma chemical reaction, was observed in all the experiments when the H2O or O2 is presence in the simulated gas. The lowest energy cost of NO conversion is achieved at the SED of 1250 J/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hessel V, Anastasopoulou A, Wang Q, Kolb G, Lang J (2013) Catal Today 211:9–28

    Article  CAS  Google Scholar 

  2. Penetrante BM, Hsiao MC, Merritt BT, Vogtlh GE, Wallman PH (1995) IEEE Trans Plasma Sci 23:679–689

    Article  CAS  Google Scholar 

  3. McLarnon CR, Penetrante BM (1998) Society of automotive engineers fall fuels and lubricants meeting 1998, San Francisco, CA, pp 19–22

  4. Kossyi AYKIA, Matveyev AA, Silakov VP (1992) Plasma Sources Sci Technol 1:207–220

    Article  CAS  Google Scholar 

  5. Fridman A, Chirokov A, Gutsol A (2005) J Phys D Appl Phys 38:R1–R24

    Article  CAS  Google Scholar 

  6. Teodoru S, Kusano Y, Bogaerts A (2012) Plasma Process Polym 9:652–689

    Article  CAS  Google Scholar 

  7. McLarnon CR, Penetrante BM (1998) Society of automotive engineers fall fuels and lubricants meeting, p 982434

  8. Patil BS, Cherkasov N, Lang J, Ibhadon AO, Hessel V, Wang Q (2016) Appl Catal B 194:123–133

    Article  CAS  Google Scholar 

  9. Miessner H, Francke KP, Rudolph R (2002) Appl Catal B Environ 36:53–62

    Article  CAS  Google Scholar 

  10. Tonkyn RG, Barlow SE, Hoard JW (2003) Appl Catal B 40:207–217

    Article  CAS  Google Scholar 

  11. Atkinson R, Baulch DL, Cox RA, Hampson RF, Kerr JA, Rossi MJ, Troe J (1997) J Phys Chem Ref Data 26:1329

    Article  CAS  Google Scholar 

  12. Fridman A (2012) Plasma chemistry. Cambridge University Press, New York

    Google Scholar 

  13. Penetrante BM, Brusasco RM, Merritt BT, Pitz WJ, Vogtlin GE, Kung MC, Kung HH, Wan CZ, Voss KE (1998) Society of automotive engineers fall fuels and lubricants meeting, p 982508

  14. Fujii YAT, Yoshioka N, Rea M (2001) J Electrostat 51–52:8–14

    Article  Google Scholar 

  15. Zhu A-M, Sun Q, Niu J-H, Xu Y, Song Z-M (2005) Plasma Chem Plasma Process 25:371–386

    Article  CAS  Google Scholar 

  16. Jõgi I, Levoll E, Raud J (2016) Chem Eng J 301:149–157

    Article  Google Scholar 

  17. Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds. John Wiley & Sons, Inc., Hoboken, New Jersey

    Google Scholar 

  18. Hadjiivanov KI (2000) Catal Rev 42:71–144

    Article  CAS  Google Scholar 

  19. Grundmann CTS (2009) Int J Heat Fluid Flow 30:394–402

    Article  Google Scholar 

  20. Borcia G, Anderson CA, Brown NM (2003) Plasma Sources Sci Technol 12:335–344

    Article  CAS  Google Scholar 

  21. Kantcheva M, Cayirtepe I (2006) J Mol Catal A Chem 247:88–98

    Article  CAS  Google Scholar 

  22. Bibart CH, Ewing GE (1974) J Chem Phys 61:1284–1292

    Article  CAS  Google Scholar 

  23. Cantrell CA, Davidson JA, McDaniel AH, Shetter RE, Calvert JG (1988) Chem Phys Lett 148:358–363

    Article  CAS  Google Scholar 

  24. Guillory WA, Hunter CE (1971) J Chem Phys 54:598–603

    Article  CAS  Google Scholar 

  25. McGraw GE, Bernitt DL, Hisatsune IC (1965) J Chem Phys 42:237

    Article  CAS  Google Scholar 

  26. Al-Abduly A, Christensen P (2015) Plasma Sources Sci Technol 24:065006

    Article  Google Scholar 

  27. Golde M (1988) Int J Chem Kinet 20:75–92

    Article  CAS  Google Scholar 

  28. Wang T, Sun B-M, Xiao H-P, Wang D, Zhu X-Y, Zhong Y-F (2013) Plasma Chem Plasma Process 33:681–690

    Article  CAS  Google Scholar 

  29. Yin S-E, Sun B-M, Gao X-D, Xiao H-P (2009) Plasma Chem Plasma Process 29:421–431

    Article  CAS  Google Scholar 

  30. Jones LH, Badger RM, Moore GE (1951) J Chem Phys 19:1599

    Article  CAS  Google Scholar 

  31. Eliasson B, Hirth M, Kogelschatz U (1987) J Phys D Appl Phys 20:1421–1437

    Article  CAS  Google Scholar 

  32. Zhao G-B, Hu X, Argyle MD, Radosz M (2004) Ind Eng Chem Res 43:5077–5088

    Article  CAS  Google Scholar 

  33. Higashi SUM, Suzuki N, Fujii K, Trans IEEE (1992) Plasma Sci 20:1–12

    Article  CAS  Google Scholar 

  34. NIST chemical kinetics database. http://kinetics.nist.gov/kinetics/index.jsp

  35. Green JHD (2001) Plasma Chem Plasma Process 21:459–481

    Article  Google Scholar 

Download references

Acknowledgements

This study was primarily supported by National Key R&D Program of China (2017YFC0210303-01). This work was also partly supported by National Natural Science Foundation of China (21677010, U1660109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honghong Yi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Wang, J., Yi, H. et al. Nitrogen Fixation and NO Conversion using Dielectric Barrier Discharge Reactor: Identification and Evolution of Products. Plasma Chem Plasma Process 38, 485–501 (2018). https://doi.org/10.1007/s11090-018-9876-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-018-9876-4

Keywords

Navigation