Skip to main content
Log in

The Existence of Non-negatively Charged Dust Particles in Nonthermal Plasmas

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Particles in nonthermal dusty plasmas tend to charge negatively. However several effects can result in a significant fraction of the particles being neutral or positively charged, in which case they can deposit on surfaces that bound the plasma. Monte Carlo charging simulations were conducted to explore the effects of several parameters on the non-negative particle fraction of the stationary particle charge distribution. These simulations accounted for two effects not considered by the orbital motion limited theory of particle charging: single-particle charge limits, which were implemented by calculating electron tunneling currents from particles; and the increase in ion current to particles caused by charge-exchange collisions that occur within a particle’s capture radius. The effects of several parameters were considered, including particle size, in the range 1–10 nm; pressure, ranging from 0.1 to 10 Torr; electron temperature, from 1 to 5 eV; positive ion temperature, from 300 to 700 K; plasma electronegativity, characterized in terms of n +/n e ranging from 1 to 1000; and particle material, either SiO2 or Si. Within this parameter space, higher non-negative particle fractions are associated with smaller particle size, higher pressure, lower electron temperature, lower positive ion temperature, and higher electronegativity. Additionally, materials with lower electron affinities, such as SiO2, have higher non-negative particle fractions than materials with lower electron affinities, such as Si.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kortshagen UR, Sankaran RM, Pereira RN, Girshick SL, Wu JJ, Aydil ES (2016) Nonthermal plasma synthesis of nanocrystals: fundamental principles, materials, and applications. Chem Rev 116:11061–11127

    Article  CAS  Google Scholar 

  2. Chaabane N, Suendo V, Vach H, Roca i Cabarrocas P (2006) Soft landing of silicon nanocrystals in plasma enhanced chemical vapor deposition. Appl Phys Lett 88:203111

    Article  Google Scholar 

  3. Rosenberg M, Mendis DA (1996) Use of UV to reduce particle trapping in process plasmas. IEEE Trans Plasma Sci 24:1133–1136

    Article  CAS  Google Scholar 

  4. Kortshagen U, Bhandarkar U (1999) Modeling of particulate coagulation in low pressure plasmas. Phys Rev E 60:887–898

    Article  CAS  Google Scholar 

  5. Denysenko IB, Ostrikov K, Xu S, Yu MY, Diong CH (2003) Nanopowder management and control of plasma parameters in electronegative SiH4 plasmas. J Appl Phys 94:6097–6107

    Article  CAS  Google Scholar 

  6. Agarwal P, Girshick SL (2014) Numerical modeling of the spatiotemporal behavior of an rf argon-silane plasma with dust particle nucleation and growth. Plasma Chem Plasma Process 34:489–503

    Article  CAS  Google Scholar 

  7. Le Picard R, Markosyan AH, Porter DH, Girshick SL, Kushner MJ (2016) Synthesis of silicon nanoparticles in nonthermal capacitively-coupled flowing plasmas: processes and transport. Plasma Chem Plasma Process 36:941–972

    Article  Google Scholar 

  8. Agarwal P, Girshick SL (2012) Sectional modeling of nanoparticle size and charge distributions in dusty plasmas. Plasma Sources Sci Technol 21:055023

    Article  Google Scholar 

  9. Allen JE (1992) Probe theory—the orbital motion approach. Phys Scr 45:497–503

    Article  Google Scholar 

  10. Matsoukas T, Russell M (1995) Particle charging in low-pressure plasmas. J Appl Phys 77:4285–4292

    Article  CAS  Google Scholar 

  11. Matsoukas T, Russell M (1997) Fokker-Planck description of particle charging in ionized gases. Phys Rev E 55:991–994

    Article  CAS  Google Scholar 

  12. Bilik N, Anthony R, Merritt BA, Aydil ES, Kortshagen UR (2015) Langmuir probe measurements of electron energy probability functions in dusty plasmas. J Phys D 48:105204

    Article  Google Scholar 

  13. Le Picard R, Girshick SL (2016) The effect of single-particle charge limits on charge distributions in dusty plasmas. J Phys D 49:095201

    Article  Google Scholar 

  14. Gallagher A (2000) A model of particle growth in silane discharges. Phys Rev E 62:2690–2706

    Article  CAS  Google Scholar 

  15. Heijmans LCJ, Wetering FMJH, Nijdam S (2016) Comment on ‘The effect of single-particle charge limits on charge distributions in dusty plasmas’. J Phys D 49:388001

    Article  Google Scholar 

  16. Le Picard R, Girshick SL (2016) Reply to ‘Comment on “The effect of single-particle charge limits on charge distributions in dusty plasmas”’. J Phys D 49:388002

    Article  Google Scholar 

  17. Khrapak SA, Ratynskaia SV, Zobnin AV, Usachev AD, Yaroshenko VV, Thoma MH, Kretschmer M, Hofner H, Morfill GE, Petrov OF, Fortov VE (2005) Particle charge in the bulk of gas discharges. Phys Rev E 72:10

    Article  Google Scholar 

  18. Gatti M, Kortshagen U (2008) Analytical model of particle charging in plasmas over a wide range of collisionality. Phys Rev E 78:046402–046406

    Article  Google Scholar 

  19. Lieberman M, Lichtenberg A (2005) Principles of plasma discharges and materials processing, 2nd edn. Wiley, New York

    Book  Google Scholar 

  20. Bouchoule A (ed) (1999) Dusty plasmas: physics, chemistry and technological impacts in plasma processing. Wiley, New York

    Google Scholar 

  21. Goree J (1992) Ion trapping by a charged dust grain in a plasma. Phys Rev Lett 69:277–280

    Article  CAS  Google Scholar 

  22. Epstein PS (1924) Phys Rev 23:710

    Article  CAS  Google Scholar 

  23. Roca i Cabarrocas P, Gay P, Hadjadj A (1996) Experimental evidence for nanoparticle deposition in continuous argon-silane plasmas: effects of silicon nanoparticles on film properties. J Vac Sci Technol A 14:655–659

    Article  CAS  Google Scholar 

  24. Larriba-Andaluz C, Girshick SL (2017) Controlled fluxes of silicon nanoparticles to a substrate in pulsed radio-frequency argon–silane plasmas. Plasma Chem Plasma Process 37:43–58

    Article  Google Scholar 

  25. Mangolini L, Kortshagen U (2009) Selective nanoparticle heating: another form of nonequilibrium in dusty plasmas. Phys Rev E 79:026405

    Article  Google Scholar 

  26. Kramer NJ, Anthony RJ, Mamunuru M, Aydil ES, Kortshagen UR (2014) Plasma-induced crystallization of silicon nanoparticles. J Phys D 47:075202

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Lam Research Foundation, the U.S. National Science Foundation (CHE-124752), and the U.S. Dept. of Energy Office of Fusion Energy Science (DE-SC0001939).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Girshick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamunuru, M., Le Picard, R., Sakiyama, Y. et al. The Existence of Non-negatively Charged Dust Particles in Nonthermal Plasmas. Plasma Chem Plasma Process 37, 701–715 (2017). https://doi.org/10.1007/s11090-017-9798-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9798-6

Keywords