Skip to main content
Log in

Influence of PM Size Distribution and Ingredients on DPF Regeneration by Non-thermal Plasma Technology

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Experimentation was conducted to analyze the diesel particulate filters (DPF) trap under four different engine loads with particle size analysis and thermo-gravimetric analysis introduced to characterize particulate matter (PM) samples. DPF regeneration was achieved utilizing an oxygen-fed non-thermal plasma (NTP) injection system. Results indicated that accompanying the increase of engine load, the concentration of nucleation mode particles decrease while that of accumulation mode particles and the total concentration number increase at first and then decrease with the total concentration number of PM peaking at 50% load. H2O and soluable organic fraction in PM demonstrate a downward trend while dry soot exhibits an upward trend in mass fraction with the increasing load. NTP may then separate PM into CO and CO2. Size distribution and ingredients of PM trapped by DPF under different loads vary, thus the intensity of reaction between PM and radical gases produced by NTP is different. C1 (C in CO) exhibited a declining trend with the increasing of engine load, while C2 (C in CO2) and C12 (sum of C1 and C2) increase first and decrease after. Mass of PM removal maximizes at 50% load while DPF regeneration effect is the most remarkable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Correa MS, Arbilla G (2008) Carbonyl emissions in diesel and biodiesel exhaust. Atmos Environ 42(2):769–775

    Article  Google Scholar 

  2. Wang CC, Chen RJ, Zhao ZH, Cai J, Lu JX, Ha SD, Xu XH, Chen X, Kan HD (2015) Particulate air pollution and circulating biomarkers among type 2 diabetic mellitus patients: the roles of particle size and time windows of exposure. Environ Res 140:112–118

    Article  CAS  Google Scholar 

  3. Topinka J, Milcova A, Schmuczerova J, Krouzek J, Hovorka J (2013) Ultrafine particles are not major carriers of carcinogenic PAHs and their genotoxicity in size-segregated aerosols. Mutat Res/Genet Toxicol Environ Mutagen 754(1–2):1–6

    Article  CAS  Google Scholar 

  4. Wang CM, Xu HM, Herreros MJ, Wang JX, Cracknell R (2014) Impact of fuel and injection system on particle emissions from a GDI engine. Appl Energy 132:178–191

    Article  Google Scholar 

  5. Tan PQ, Ruan SS, Hu ZY, Lou DM, Li H (2014) Particle number emissions from a light-duty diesel engine with biodiesel fuels under transient-state operating conditions. Appl Energy 113:22–31

    Article  CAS  Google Scholar 

  6. Walter K (2008) Diesel engine development in view of reduced emission standards. Energy 33:264–271

    Article  Google Scholar 

  7. Martyn VT (2007) Progress and future challenges in controlling automotive exhaust gas emissions. Appl Catal B 70(1–4):2–15

    Google Scholar 

  8. Meng ZW, Guo D, Song QY, Yao Q, Xu XC (2008) Experimental investigation on the influence of wall-flow diesel particulate filter parameters on filter performance. J Eng Thermophys 29(1):171–173

    Article  Google Scholar 

  9. Zhang H, Wang WL, Yang JJ, Wang JQ (2010) After-treatment technology for vehicle diesel. China Science and Technology Press, Beijing

  10. Chen P, Ibrahim U, Wang J (2014) Experimental investigation of diesel and biodiesel post injections during active diesel particulate filter regenerations. Fuel 130(7):286–295

    Article  CAS  Google Scholar 

  11. Chen K, Martirosyan KS, Luss D (2010) Temperature excursions during soot combustion in a diesel particulate filter (DPF). Ind Eng Chem Res 49:10358–10363

    Article  CAS  Google Scholar 

  12. Palma V, Ciambellia P, Melonia E, Sin A (2015) Catalytic DPF microwave assisted active regeneration. Fuel 140:50–61

    Article  CAS  Google Scholar 

  13. Palma V, Ciambellia P, Melonia E, Sin A (2013) Study of the catalyst load for a microwave susceptible catalytic DPF. Catal Today 216:185–193

    Article  CAS  Google Scholar 

  14. Beatrice C, Iorio SD, Guido C, Napolitano P (2012) Detailed characterization of particulate emissions of an automotive catalyzed DPF using actual regeneration strategies. Exp Thermal Fluid Sci 39:45–53

    Article  CAS  Google Scholar 

  15. Perez VR, Lopez AB (2015) Catalytic regeneration of diesel particulate filters: comparison of Pt and CePr active phases. Chem Eng J 279:79–85

    Article  CAS  Google Scholar 

  16. Kuroki T, Fujishima H, Otsuka K, Ito T, Okubo M, Yamamoto T, Yoshida K (2008) Continuous operation of commercial-scale plasma–chemical aftertreatment system of smoke tube boiler emission with oxidation reduction potential and pH control. Thin Solid Films 516(19):6704–6709

    Article  CAS  Google Scholar 

  17. Kuwahara T, Kuroki T, Yoshida K, Saeki N, Okubo M (2012) Development of sterilization device using air nonthermal plasma jet induced by atmospheric pressure corona discharge. Thin Solid Films 523:2–5

    Article  CAS  Google Scholar 

  18. Kameda T, Inazu K, Hisamatsu Y, Bandow H (2006) Isomer distribution of nitrotriphenylenes in airborne particles, diesel exhaust particles, and the productsof gas-phase radical-initiated nitration of triphenylene. Atmos Environ 40(40):7742–7751

    Article  CAS  Google Scholar 

  19. Kirkpatrick MJ, Odic E, Zinola S, Lavy J (2012) Plasma assisted heterogeneous catalytic oxidation: HCCI Diesel engine investigations. Appl Catal B 117–118:1–9

    Article  Google Scholar 

  20. Chen YY, Cai YX, Li XH, SHI YX, Zheng Y (2015) Experimental study on regenerating fouled EGR cooler by NTPI technology. Int J Automot Technol 16(2):183–191

    Article  Google Scholar 

  21. Fan YS, Cai YX, Li XH, Yin HY, Chen L, Liu S (2015) Regeneration of the HZSM-5 zeolite deactivated in the upgrading of bio-oil via non-thermal plasma injection (NTPI) technology. J Anal Appl Pyrol 111:209–215

    Article  CAS  Google Scholar 

  22. Thomas SE, Martin AR, Raybone D, Shawcross JT, Ng KL, Beech P (2000) Non thermal plasma aftertreatment of particulates-theoretical limits and impact on reactor design. SAE Technical Paper No. 2000-01-1926

  23. Fushimi C, Madokoro K, Yao S, Fujioka Y, Yamada K (2008) Influence of polarity and rise time of pulse voltage waveforms on diesel particulate matter removal using an uneven dielectric barrier discharge reactor. Plasma Chem Plasma Process 28:511–522

    Article  CAS  Google Scholar 

  24. Babaie M, Davari P, Talebizadeh P, Zare F, Rahimzadeh H, Ristovski Z, Brown R (2015) Performance evaluation of non-thermal plasma on particulate matter, ozone and CO2 correlation for diesel exhaust emission reduction. Chem Eng J 276:240–248

    Article  CAS  Google Scholar 

  25. Okubo M, Kuroki T, Yamamoto T, Miwa S (2003) Soot incineration of diesel particulate filter using honeycomb nonthermal plasma. SAE Paper No. 2003-01-1886

  26. Okubo M, Kuroki T, Miyairi Y, Yamamoto T (2004) Low-temperature soot incineration of diesel particulate filter using remote nonthermal plasma induced by a pulsed barrier discharge. IEEE Trans Ind Appl 40(6):1504–1512

    Article  CAS  Google Scholar 

  27. Okubo M, Arita N, Kuroki T, Yamamoto T (2007) Carbon particulate matter incineration in diesel engine emissions using indirect nonthermal plasma processing. Thin Solid Films 515(9):4289–4295

    Article  CAS  Google Scholar 

  28. Okubo M, Arita N, Kuroki T, Yoshida K, Yamamoto T (2008) Total diesel emission control technology using ozone injection and plasma desorption. Plasma Chem Plasma Process 28(2):173–187

    Article  CAS  Google Scholar 

  29. Okubo M, Kuwahara T, Kanaka Y, Kuroki T (2010) Improvement of NOx reduction efficiency in diesel emission using nonthermal plasma-exhaust gas recirculation combined aftertreatment. IEEE Ind Appl Soc Annu Meet, pp 1–7

  30. Shi YX, Cai YX, Li XH, Chen YY, Ding DW, Tang W (2014) Mechanism and method of DPF regeneration by oxygen radical generated by NTP technology. Int J Automot Technol 15(6):871–876

    Article  Google Scholar 

  31. Shi YX, Cai YX, Li KH, Li XH, Chen YY (2013) Experiment study on the DPF regeneration based on non-thermal plasma technology. Appl Mech Mater 327:1347–1351

    Article  Google Scholar 

  32. Shi YX, Cai YX, Li XH, Xu H, Li WJ, Pu XY (2016) Low temperature dpf regeneration by non-thermal plasma injection system with air source. Plasma Chem Plasma Process 36(3):783–797

    Article  CAS  Google Scholar 

  33. Koudriavtsev O, Wang S, Konishi Y, Nakaoka M (2002) A novel pulse-density-modulated high-frequency inverter for silent-dischargetype ozonizer. IEEE Trans Ind Appl 38(2):369–378

    Article  CAS  Google Scholar 

  34. Kittelson DB (1998) Enginges and nanoparticles: a review. Aerosol Sci 29(5/6):575–588

    Article  CAS  Google Scholar 

  35. Schneider J, Hock N, Weimer S, Borrmann S, Kirchner U, Vogt R (2005) Nucleation particles in diesel exhaust: composition inferred from in situ mass spectrometric analysis. Environ Sci Technol 39(16):6153–6161

    Article  CAS  Google Scholar 

  36. Kwak JH, Kim HS, Lee JH, Lee SH (2014) On-road chasing measurement of exhaust particle emissions from diesel, CNG, LPG and DME-Fueled vehicles using a mobile emission laboratory. Int J Automot Technol 15(4):543–551

    Article  Google Scholar 

  37. Tartakovsky L, Baibikov V, Comte P, Czerwinski J, Mayer A, Veinblat M, Zimmerli Y (2015) Ultrafine particle emissions by in-use diesel buses of variousgenerations at low-load regimes. Atmos Environ 107:273–280

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support provided by the National Natural Science Foundation of China (51676089), the Major Program of Natural Science Foundation of Jiangsu Province (16KJA470002), the Priority Academic Program Development of Jiangsu Higher Education Institutions ([2011]No.6) and the Graduate Students Scientific Research Innovation Project of Jiangsu Ordinary University (KYLX15_1070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunxi Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Cai, Y., Wang, J. et al. Influence of PM Size Distribution and Ingredients on DPF Regeneration by Non-thermal Plasma Technology. Plasma Chem Plasma Process 37, 451–464 (2017). https://doi.org/10.1007/s11090-016-9775-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9775-5

Keywords

Navigation