Skip to main content
Log in

Modelling of an Atmospheric Pressure Nitrogen Glow Discharge Operating in High-Gas Temperature Regimes

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A model of an atmospheric pressure nitrogen glow discharge in high-gas temperature regimes is developed. The model considers a fairly complete set of chemical reactions, including several processes with the participation of electronically exited nitrogen atoms describing the energy balance and charged particles kinetic processes in the discharge. It is shown that the thermal dissociation of vibrationally excited molecules plays an essential role in the production of N(4 S) atoms. The dominant ion within the investigated current range (52–187 mA) is the molecular N2 + with an increasing proportion of atomic N+ towards high-current values. The process of production of electrons within the almost whole current range is controlled predominantly by associative ionization in atomic collisions N(2 P) + N(2 P) → N2 + + e; being the N(2 P) atoms mainly produced via quenching of N2(A 3 +u ) electronically excited molecules by N(4 S) atoms. The results of calculations are compared with the available experimental data and a good agreement is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Park GY, Park SJ, Choi MY, Koo IG, Byun JH, Hong JW, Sim JY, Collins GJ, Lee JK (2012) Plasma Sources Sci Technol 21:21

    Article  Google Scholar 

  2. Fridman A, Chirokov A (2005) J Phys D Appl Phys 38:R1–R24

    Article  CAS  Google Scholar 

  3. Kunhardt EE (2000) IEEE Trans Plasma Sci 28:189–200

    Article  Google Scholar 

  4. Gambling WA, Edels H (1954) Br J Appl Phys 5:36–39

    Article  Google Scholar 

  5. Machala Z, Marode E, Laux CO, Kruger CH (2004) J Adv Oxid Technol 7:133–137

    Google Scholar 

  6. Staack D, Farouk B, Gutsol A, Fridman A (2008) Plasma Sources Sci Technol 17:13

    Article  Google Scholar 

  7. Verreycken T, Schram DC, Leys C, Bruggeman P (2010) Plasma Sources Sci Technol 19:9

    Article  Google Scholar 

  8. Machala Z, Laux CO, Kruger CH (2005) IEEE Trans Plasma Sci 33:320–321

    Article  CAS  Google Scholar 

  9. Staack D, Farouk B, Gutsol A, Fridman A (2005) Plasma Sources Sci Technol 14:700–711

    Article  CAS  Google Scholar 

  10. Wilson A, Staack D, Farouk T, Gutsol A, Fridman A, Farouk B (2008) Plasma Sources Sci Technol 17:12

    Article  Google Scholar 

  11. Prevosto L, Kelly H, Mancinelli B, Chamorro JC, Cejas E (2015) Phys Plasmas 22:8

    Article  Google Scholar 

  12. Staack D, Farouk B, Gutsol A, Fridman A (2009) J Appl Phys 106:7

    Article  Google Scholar 

  13. Bayle P, Bayle M, Forn G (1985) J Phys D Appl Phys 18:2395–2415

    Article  CAS  Google Scholar 

  14. Hsu CC, Wu CY (2009) J Phys D Appl Phys 42:8

    Google Scholar 

  15. Akishev Yu, Goossens O, Callebaut T, Leys C, Napartovich A, Trushkin N (2001) J Phys D Appl Phys 34:2875–2882

    Article  CAS  Google Scholar 

  16. Raizer YP (1991) Gas discharge physics. Springer, Berlin

    Book  Google Scholar 

  17. Boeuf JP, Kunhardt EE (1986) J Appl Phys 60:915–923

    Article  CAS  Google Scholar 

  18. Capitelli M, Ferreira CM, Gordiets BF, Osipov AI (2000) Plasma kinetics in atmospheric gases. Springer, New York

    Book  Google Scholar 

  19. Velikhov EP, Golubev VS, Pashkin SV (1982) Sov Phys Usp 25:340–358

    Article  Google Scholar 

  20. Eletskii AV, Smirnov BM (1996) Phys Usp 39:1137–1156

    Article  Google Scholar 

  21. Akishev Y, Grushin M, Karalnik V, Petryakov A, Trushkin N (2010) J Phys D Appl Phys 43:11

    Google Scholar 

  22. Kruger CH, Laux CO, Yu L, Packan DM, Pierrot L (2002) Pure Appl Chem 74:337–347

    Article  CAS  Google Scholar 

  23. Yu L, Laux CO, Packan DM, Kruger CH (2002) J Appl Phys 91:2678–2686

    Article  CAS  Google Scholar 

  24. Yalin AP, Laux CO, Kruger CH, Zare RN (2003) Plasma Sources Sci Technol 11:248–253

    Article  Google Scholar 

  25. Akishev Y, Grushin M, Karalnik V, Petryakov A, Trushkin N (2010) J Phys D Appl Phys 43:18

    Google Scholar 

  26. Pierrot L, Yu L, Gessman RJ, Laux CO, Kruger CH (1999) In: Proceedings of 30th AIAA plasmadynamics and lasers conference, AIAA 99-3478, Norfolk, VA

  27. Hugill J, Saktioto T (2001) Plasma Sources Sci Technol 10:38–42

    Article  CAS  Google Scholar 

  28. Saporoschenko M (1965) Phys Rev 139:352–356

    Article  CAS  Google Scholar 

  29. Mehr FJ, Biondi MA (1969) Phys Rev 181:264–271

    Article  CAS  Google Scholar 

  30. Lin CL, Kaufman F (1971) J Chem Phys 55:3760–3770

    Article  CAS  Google Scholar 

  31. Naidis GV (2007) Plasma Sources Sci Technol 16:297–303

    Article  Google Scholar 

  32. Kossyi IA, Kostinsky AY, Matveyev AA, Silakov VP (1992) Plasma Sources Sci Technol 1:207–220

    Article  CAS  Google Scholar 

  33. Brunet H, RocaSerra J (1985) J Appl Phys 57:1574–1581

    Article  CAS  Google Scholar 

  34. Guerra V, Sa PA, Loureiro J (2004) Eur Phys J Appl Phys 28:125–152

    Article  CAS  Google Scholar 

  35. Hagelaar GJM, Pitchford LC (2005) Plasma Sources Sci. Technol. 14:722–733; freeware code BOLSIG+ version 07/2015. www.bolsig.laplace.univ-tlse.fr (2015)

  36. SIGLO database, http://www.lxcat.laplace.univ-tlse.fr. Retrieved June 4, 2013

  37. Macheret SO, Rich JW (1993) Chem Phys 174:25–43

    Article  CAS  Google Scholar 

  38. Fridman AA, Kennedy LA (2004) Plasma physics and engineering. Taylor & Francis, London

    Book  Google Scholar 

  39. Chernyi GG, Losev SA, Macheret SO, Potapkin BV (2002) Physical and chemical processes in gas dynamics: cross sections and rate constants, vol 1. AIAA, New York

    Google Scholar 

  40. da Silva ML, Guerra V, Loureiro J (2007) Chem Phys 342:275–287

    Article  Google Scholar 

  41. Andre P, Abbaoui M, Lefort A, Parizet MJ (1996) Plasma Chem Plasma Process 16:379–397

    Article  CAS  Google Scholar 

  42. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure: IV constants of diatomic molecules. Springer, Berlin

    Book  Google Scholar 

  43. D’Ammando G, Colonna G, Pietanza LD, Capitelli M (2010) Spectrochim Acta Part B 65:603–605

    Article  Google Scholar 

  44. Bacri J, Medani A (1982) Phys C 112:101–118

    CAS  Google Scholar 

  45. Benilov MS, Naidis GV (2003) J Phys D Appl Phys 36:1834–1841

    Article  CAS  Google Scholar 

  46. Boulos M, Fauchais P, Pfender E (1994) Thermal plasmas, fundamentals and applications, vol 1. Plenum Press, New York and London

    Book  Google Scholar 

  47. Popov NA (2001) Plasma Phys Rep 27:886–896

    Article  Google Scholar 

  48. Popov NA (2011) J Phys D Appl Phys 44:16

    Article  Google Scholar 

  49. Mintoussov EI, Pendleton SJ, Gerbault FG, Popov NA, Starikovskaia SM (2011) J Phys D Appl Phys 44:13

    Article  Google Scholar 

  50. Matveyev AA, Silakov VP (1999) Plasma Sources Sci Technol 8:162–178

    Article  CAS  Google Scholar 

  51. Itikawa Y (2006) J Phys Chem Ref Data 35:31–53

    Article  CAS  Google Scholar 

  52. Aleksandrov NL, Bazelyan EM, Kochetov IV, Dyatko NA (1997) J Phys D Appl Phys 30:1616–1624

    Article  CAS  Google Scholar 

  53. Brunet H, Vincent P, RocaSerra J (1983) J Appl Phys 54:4951–4957

    Article  CAS  Google Scholar 

  54. Cao YS, Johnsen R (1991) J Chem Phys 95:7356–7359

    Article  CAS  Google Scholar 

  55. Bourdon A, Vervisch P (1996) Phys Rev E 54:1888–1898

    Article  CAS  Google Scholar 

  56. Dunn MG, Lordi JA (1970) AIAA J. 8:339–345

    Article  CAS  Google Scholar 

  57. Piper LG (1988) J Chem Phys 88:6911–6921

    Article  CAS  Google Scholar 

  58. Hays GN, Oskam HJ (1973) J Chem Phys 59:1507–1516

    Article  CAS  Google Scholar 

  59. Piper LG (1988) J Chem Phys 88:231–232

    Article  CAS  Google Scholar 

  60. Clark WG, Setser DW (1980) J Chem Phys 84:2225–2233

    Article  CAS  Google Scholar 

  61. Tatarova E, Dias FM, Gordiets B, Ferreyra CM (2005) Plasma Sources Sci Technol 14:19–31

    Article  CAS  Google Scholar 

  62. Piper LG (1989) J Chem Phys 90:7087–7095

    Article  CAS  Google Scholar 

  63. Heidner RF, Sutton DG, Suchard SN (1976) Chem Phys Lett 37:243–248

    Article  CAS  Google Scholar 

  64. Piper LG (1987) J Chem Phys 87:1625–1629

    Article  CAS  Google Scholar 

  65. Gordiets BF, Ferreira CM, Guerra VL, Loureiro JMAH, Nahorny J, Pagnon D, Touzeau M, Vialle M (1995) IEEE Trans Plasma Sci 23:750–768

    Article  CAS  Google Scholar 

  66. Gordiets B, Ferreira CM, Pinheiro MJ, Ricard A (1998) Plasma Sources Sci Technol 7:363–378

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the CONICET (PIP 11220120100453) and Universidad Tecnológica Nacional (PID 2264). L. P. and H. K. are members of the CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Prevosto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prevosto, L., Kelly, H. & Mancinelli, B. Modelling of an Atmospheric Pressure Nitrogen Glow Discharge Operating in High-Gas Temperature Regimes. Plasma Chem Plasma Process 36, 973–992 (2016). https://doi.org/10.1007/s11090-016-9716-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9716-3

Keywords

Navigation