Skip to main content
Log in

Removal of Volatile Organic Compounds (VOCs) at Room Temperature Using Dielectric Barrier Discharge and Plasma-Catalysis

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Non-thermal plasma (NTP) was produced in a dielectric barrier discharge reactor for degradation of acetaldehyde and benzene, respectively. The effect of volatile organic compounds (VOCs) chemical structure on the reaction was investigated. In addition, acetaldehyde was removed in different background gas. The results showed that, no matter in nitrogen, air or oxygen, NTP technology always exhibited high acetaldehyde removal efficiency at ambient temperature. However, it also caused some toxicity by-product such as NOx and ozone. Meanwhile, some intermediates such as acetic acid, amine and nitromethane were formed and resulted in low carbon dioxide selectivity. To solve above problems, Co–OMS-2 catalysts were synthesized and combined with plasma. It was found that, the introduction of catalysts improved VOCs removal efficiency and inhibited by-product formation of plasma significantly. The plasma-catalysis system was operated in a recycling experiment to investigate its stability. The acetaldehyde removal efficiency can be kept at 100 % in the whole process. However, slight deactivation in ozone control was observed at the later stage of the experiment, which may be ascribed to deposition of VOCs on the catalysts surface and reduction of catalysts surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mok YS, Lee SB, Oh JH, Ra KS, Sung BH (2008) Plasma Chem Plasma Process 28:663–676

    Article  CAS  Google Scholar 

  2. Ramos ME, Bonelli PR, Cukierman AL, Ribeiro Carrott MML, Carrott PJM (2010) J Hazard Mater 177:175–182

    Article  CAS  Google Scholar 

  3. Liotta LF (2010) Appl Catal B: Environ 100:403–412

    Article  CAS  Google Scholar 

  4. Wang Z, Xiu G, Qiao T, Zhao K, Zhang D (2013) Bioresour Technol 130:52–58

    Article  CAS  Google Scholar 

  5. Sleiman M, Conchon P, Ferronato C, Chovelon J (2009) Appl Catal B: Environ 86:159–165

    Article  CAS  Google Scholar 

  6. Vandenbroucke AM, Morent R, Geyter ND, Leys C (2011) J Hazard Mater 195:30–54

    Article  CAS  Google Scholar 

  7. Huang X, Yuan J, Shi JW, Shangguan WF (2009) J Hazard Mater 171:827–832

    Article  CAS  Google Scholar 

  8. Huang H, Ye D, Guan X (2008) Catal Today 139:43–48

    Article  CAS  Google Scholar 

  9. Harling AM, Glover DJ, Whitehead JC, Zhang K (2009) Appl Catal B: Environ 90:157–161

    Article  CAS  Google Scholar 

  10. Chen HL, Lee HM, Chen SH, Chang MB, Yu SJ, Li SN (2009) Environ Sci Technol 43:2216–2227

    Article  CAS  Google Scholar 

  11. Simiand NB, Pasquiers S, Jorand F, Postel C, Vacher JR (2009) J Phys D Appl Phys 44:122003

    Article  Google Scholar 

  12. Liao X, Guo Y, He J, Ou W, Ye D (2010) Plasma Chem Plasma Process 30:841–853

    Article  CAS  Google Scholar 

  13. Durme JV, Dewulf J, Leys C, Langenhove HV (2008) Appl Catal B: Environ 78:324–333

    Article  Google Scholar 

  14. Subrahmanyam C, Renken A, Minsker LK (2007) Chem Eng J 134:78–83

    Article  CAS  Google Scholar 

  15. Zhao D, Li X, Shi C, Fan H, Zhu A (2011) Chem Eng Sci 66:3922–3929

    Article  CAS  Google Scholar 

  16. Marotta E, Callea A, Rea M, Paradisi C (2007) Environ Sci Technol 41:5862–5868

    Article  CAS  Google Scholar 

  17. Subrahmanyam Ch, Renken A, Minsker LK (2010) Chem Eng J 160:677–682

    Article  CAS  Google Scholar 

  18. Takaki K, Hatanaka Y, Arima K, Mukaigawa S, Fujiwara T (2009) Vacuum 83:128–132

    Article  Google Scholar 

  19. DeGuzman RN, Shen Y, Neth EJ, Suib SL, O’Young C, Levine S, Newsam JM (1994) Chem Mater 6:815–821

    Article  CAS  Google Scholar 

  20. Bo Z, Yan J, Li X, Chi Y, Cen K (2009) J Hazard Mater 166:1210–1216

    Article  CAS  Google Scholar 

  21. Liu YN, Braci L, Cavadias S, Ognier S (2011) J Phys D Appl Phys 44:095202

    Article  Google Scholar 

  22. Einaga H, Ogata A (2009) J Hazard Mater 164:1236–1241

    Article  CAS  Google Scholar 

  23. Radhakrishnan R, Oyama ST (2001) J Phys Chem B 105:4245–4253

    Article  CAS  Google Scholar 

  24. Li WN, Yuan J, Mower SG, Sithambaram S, Suib SL (2006) J Phys Chem B 110:3066–3070

    Article  CAS  Google Scholar 

  25. Hu B, Chen C, Frueh SJ, Jin L, Joesten R, Suib SL (2010) J Phys Chem C 114:9835–9844

    Article  CAS  Google Scholar 

  26. Julien CM, Massot M, Poinsignon C (2004) Spectrochim Acta A 60:689–700

    Article  CAS  Google Scholar 

  27. Gao T, Glerup M, Krumeich F, Nesper R, Fjellvag H, Norby P (2008) J Phys Chem C 112:13134–13140

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors will thank the National High Technology Research and Development Program (863 Program) of China (2010AA064907) for its supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfeng Shangguan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Fan, Z., Shi, J. et al. Removal of Volatile Organic Compounds (VOCs) at Room Temperature Using Dielectric Barrier Discharge and Plasma-Catalysis. Plasma Chem Plasma Process 34, 801–810 (2014). https://doi.org/10.1007/s11090-014-9535-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-014-9535-3

Keywords

Navigation