Skip to main content

Advertisement

Log in

Conversion of Methane and Carbon Dioxide in a DBD Reactor: Influence of Oxygen

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A continuous plug flow reactor supported by a dielectric barrier discharge (DBD) is used to study the conversion of methane, carbon dioxide, and oxygen at different compositions. The three studied gases were diluted with helium to 3 % with an overall flow rate of 200 sccm. The 13.56 MHz plasma was ignited at atmospheric pressure. The product stream and the inlet flow were analyzed by a FTIR spectrometer equipped with a White-cell and by a quadrupole mass spectrometer. The DBD reactor generates hydrogen, carbon monoxide, ethane, ethene, acetylene, formaldehyde, and methanol. Additional oxygen in the feed has positive effects on the yield of methanol, formaldehyde and carbon monoxide and reduces the total consumed energy. The hydrogen yield reaches its maximum at medium amounts of oxygen in the inlet flow. The conversion of methane increases to a limiting value of about 35 %. Methane rich feeds increase the yield of hydrogen, ethane and methanol. On the other hand, additional oxygen has a negative influence on the produced amount of C2 hydrocarbons. The conversion of methane and carbon dioxide as well as the yield of synthesis gas components and C2 hydrocarbons increases by changing the plasma power to higher values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Harding RH, Peters AW, Nee JRD (2001) Appl Catal. A 221:389–396

    CAS  Google Scholar 

  2. Rasi S, Veijanen A, Rintala J (2007) Energy 32:1375–1380

    Article  CAS  Google Scholar 

  3. Rasi S, Läntelä J, Veijanen A, Rintala J (2008) Waste Manage 28:1528–1534

    Article  CAS  Google Scholar 

  4. Tao X, Bai M, Li X, Long H, Shang S, Yin Y, Dai X (2011) Prog Energy Combust 37:113–124

    Article  CAS  Google Scholar 

  5. Kogelschatz U, Eliasson B, Egli WJ (1997) Phys IV France 07:47–66

    Google Scholar 

  6. Kroker T, Kolb T, Schenk A, Krawczyk K, Młotek M, Gericke K-H (2012) Plasma Chem Plasma Process 32:565–582

    Article  CAS  Google Scholar 

  7. Sentek J, Krawczyk K, Młotek M, Kalczewska M, Kroker T, Kolb T, Schenk A, Gericke K-H, Schmidt-Szałowski K (2010) Appl Catal B 94:19–26

    Article  CAS  Google Scholar 

  8. Zhang K, Eliasson B, Kogelschatz U (2002) Ind Eng Chem Res 41:1462–1468

    Article  CAS  Google Scholar 

  9. Song HK, Lee H, Choi J-W, Na B (2004) Plasma Chem Plasma Process 24:57–72

    Article  Google Scholar 

  10. Wang Q, Yan BH, Jin Y, Cheng Y (2009) Energy Fuels 23:4196–4201

    Article  CAS  Google Scholar 

  11. Li X-S, Zhua A-M, Wang K-J, Xu Y, Song Z-M (2004) Catal Today 98:617–624

    Article  CAS  Google Scholar 

  12. Kolb T, Kroker T, Gericke K-H (2013) Vaccum 88:144–148

    Article  CAS  Google Scholar 

  13. Kroker T, Kolb T, Krawczyk K, Mlotek M, Schenk A, Gericke K-H (2010) Front Appl Plasma Technol 3:69–73

    CAS  Google Scholar 

  14. Li Y, Liu C-J, Eliasson B, Wang Y (2002) Energy Fuels 16:864–870

    Article  CAS  Google Scholar 

  15. Pietruszka B, Heintze M (2004) Catal Today 90:151–158

    Article  CAS  Google Scholar 

  16. Larkin DW, Lobban LL, Mallinson RG (2001) Catal Today 71:199–210

    Article  CAS  Google Scholar 

  17. Aghamir FM, Matin NS, Jalili AH, Esfarayeni MH, Khodagholi MA, Ahmadi R (2004) Plasma Sources Sci Technol 13:707–711

    Article  CAS  Google Scholar 

  18. Zhou LM, Xue B, Kogelschatz U, Eliasson B (1998) Plasma Chem Plasma Process 18:375–393

    Article  CAS  Google Scholar 

  19. Nozaki T, Goujard V, Yuzawa S, Moriyama S, Agiral A, Okazaki K (2011) J Phys D Appl Phys 44:1–6

    Google Scholar 

  20. Larkin DW, Caldwell TA, Lobban LL, Mallinson RG (1998) Energy Fuels 12:740–744

    Article  CAS  Google Scholar 

  21. Baowei W, Xu Z, Yongwei L, Genhui X (2008) J Nat Gas Chem 18:94–97

    Google Scholar 

  22. Darwent BD (1970) Bond dissociation energies in simple molecules. NBSDS-NBS 31

  23. Beller M, Cornils B, Frohning CD, Kohlpaintner CW (1995) J Mol Catal A Chem 104:17–85

    Article  CAS  Google Scholar 

  24. Iglesia E (1997) Appl Catal A 161:59–78

    Article  CAS  Google Scholar 

  25. Liu C-J, Mallinson R, Lobban LJ (2009) Catalysis 179:326–334

    Article  Google Scholar 

  26. Tsang W, Hampson RF (1986) J Phys Chem Ref Data 15:1087–1279

    Article  CAS  Google Scholar 

  27. Kolb T, Kroker T, Voigt JH, Gericke K-H (2012) Plasma Chem Plasma Process. doi:10.1007/s11090-012-9411-y

    Google Scholar 

Download references

Acknowledgments

This project is part of the framework of the European Research Area (ERA) Chemistry call. The work is financially supported by the Deutsche Forschungsgemeinschaft (DFG). Support by the IGSM Braunschweig is gratefully acknowledged. We acknowledge T. Kroker for measuring the impedance spectra of our reactor and C. Maul for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Heinz Gericke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolb, T., Voigt, J.H. & Gericke, KH. Conversion of Methane and Carbon Dioxide in a DBD Reactor: Influence of Oxygen. Plasma Chem Plasma Process 33, 631–646 (2013). https://doi.org/10.1007/s11090-013-9448-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-013-9448-6

Keywords

Navigation