Skip to main content
Log in

Applications of Plasma Technology in Development of Superhydrophobic Surfaces

  • Review Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Superhydrophobic surfaces, originally inspired by nature, have gained a lot of interest in the past few decades. Superhydrophobicity is a term attributed to the low adhesion of water droplets on a surface, leading to water contact angles higher than 150°. Due to their vast variety of possible applications, ranging from biotechnology and textile industry to power network management and anti-fouling surfaces, many methods have been utilized to develop superhydrophobic surfaces. Among these methods, plasma technology has proved to be a very promising approach. Plasma technology takes advantage of highly reactive plasma species to modify the functionality of various substrates. It is one of the most common surface treatment technologies which is widely being used for surface activation, cleaning, adhesion improvement, anti-corrosion coatings and biomedical coatings. In this paper, recent advances in the applications of plasma technology in the development of superhydrophobic surfaces are discussed. At first, a brief introduction to the concept of superhydrophobicity and plasma is presented, then plasma-based techniques are divided into three main categories and studied as to their applications in development of superhydrophobic surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Shirtcliffe NJ, McHale G, Newton MI (2011) J Polym Sci Part B Polym Phys 49(17):1203–1217

    Article  CAS  Google Scholar 

  2. Barthlott W, Neinhuis C, Schott CL (1997) Planta 202(1):1–8

    Article  CAS  Google Scholar 

  3. Guo Z, Liu W, Su B-L (2011) J Colloid Interface Sci 353(2):335–55

    Article  CAS  Google Scholar 

  4. Farzaneh M, Sarkar DK (2008) J CPRI 4(2):135–147

    Google Scholar 

  5. Guo Z, Liu W (2007) Plant Sci 172(6):1103–1112

    Article  CAS  Google Scholar 

  6. Guo Z, Liu W, Su B-L (2008) Appl Phys Lett 93(20):201909

    Article  CAS  Google Scholar 

  7. Dettre R, Johnson R (1963) J Phys Chem 107(43):1744–1750

    Google Scholar 

  8. Ma J, Sun Y, Gleichauf K, Lou J, Li Q (2011) Langmuir 27(16):10035–10040

    Article  CAS  Google Scholar 

  9. Yan Y, Gao N, Barthlott W (2011) Adv Colloid Interface Sci 169(2):80–105

    Article  CAS  Google Scholar 

  10. Li X-M, Reinhoudt D, Crego-Calama M (2007) Chem Soc Rev 36(8):1350–1368

    Article  Google Scholar 

  11. Kale KH, Palaskar S (2010) Text Res J 81(6):608–620

    Article  CAS  Google Scholar 

  12. Kim SH, Kim J-H, Kang B-K, Uhm HS (2005) Langmuir 21(26):12213–12217

    Article  CAS  Google Scholar 

  13. Zhang J, France P, Radomyselskiy A, Datta S, Zhao J, vanOoij W (2003) J Appl Polym Sci 88(6):1473–1481

    Article  CAS  Google Scholar 

  14. Ma M, Hill RM (2006) Curr Opin Colloid Interface Sci 11(4):193–202

    Article  CAS  Google Scholar 

  15. Yao X, Song Y, Jiang L (2011) Adv Mater 23(6):719–734

    Article  CAS  Google Scholar 

  16. Alizadeh A, Yamada M, Li R, Shang W, Otta S, Zhong S, Ge L, Dhinojwala A, Conway KR, Bahadur V, Vinciquerra aJ, Stephens B, Blohm ML (2012) Langmuir 28(6):3180–3186

    Article  CAS  Google Scholar 

  17. Farzaneh M, Volat C (2008) Atmospheric Icing of power networks chapter anti-icing. Springer, Berlin, pp 229–268

    Book  Google Scholar 

  18. Jafari R, Menini R, Farzaneh M (2010) Appl Surf Sci 257(5):1540–1543

    Article  CAS  Google Scholar 

  19. Jafari R, Mobarakeh LF, Farzaneh M (2012) Nanosci Nanotechnol Lett 4(3):369–374

    Article  CAS  Google Scholar 

  20. Lim H, Jung D-H, Noh J-H, Choi G-R, Kim W-D (2009) Chin Sci Bull 54(19):3613–3616

    Article  CAS  Google Scholar 

  21. Palumbo F, Di Mundo R, Cappelluti D, D’Agostino R (2011) Plasma Process Polym 8:118–126

    CAS  Google Scholar 

  22. Marmur A (2003) Langmuir 19(2):8343–8348

    Article  CAS  Google Scholar 

  23. Genzer J, Efimenko K (2006) Biofouling 22(5–6):339–360

    Article  CAS  Google Scholar 

  24. Wang S, Feng L, Jiang L (2006) Adv Mater 18(6):767–770

    Article  CAS  Google Scholar 

  25. Hermelin E, Petitjean J, Lacroix J-c, Chane-ching KI, Tanguy J, Lacaze P-c, De R (2008) Chem Mater 146(9):4447–4456

    Article  CAS  Google Scholar 

  26. Zhang F, Zhao L, Chen H, Xu S, Evans DG, Duan X (2008) Angew Chem Int Ed 47(13):2466–2469

    Article  CAS  Google Scholar 

  27. Hoefnagels HF, Wu D, deWith G, Ming W (2007) Langmuir 23(26):13158–13163

    Article  CAS  Google Scholar 

  28. Huang F, Wei Q, Xu W, Li Q (2007) Surf Rev Lett 14(4):547–551

    Article  CAS  Google Scholar 

  29. Zhang X, Jin M, Liu Z, Tryk D, Nishimoto S, Murakami T, Fujishima A (2007) J Phys Chem C 111(39):14521–14529

    Article  CAS  Google Scholar 

  30. Boscher ND, Choquet P, Duday D, Verdier S (2010) Surf Coat Technol 205(7):2438–2448

    Article  CAS  Google Scholar 

  31. Hosono E, Fujihara S, Honma I, Zhou H (2005) J Am Chem Soc 127(39):13458–13459

    Article  CAS  Google Scholar 

  32. Zhang X, Shi F, Yu X, Liu H, Fu Y, Wang Z, Jiang L, Li X (2004) J Am Chem Soc 126(10):3064–3065

    Article  CAS  Google Scholar 

  33. Buck ME, Schwartz SC, Lynn DM (2010) Chem Mater 22(23):6319–6327

    Article  CAS  Google Scholar 

  34. Ofir Y, Samanta B, Arumugam P, Rotello VM (2007) Adv Mater 19(22):4075–4079

    Article  CAS  Google Scholar 

  35. Ramaratnam K, Tsyalkovsky V, Klep V, Luzinov I (2007) Chem Commun 43:4510–4512

    Article  CAS  Google Scholar 

  36. Zhai L, Fevzi C, Cohen RE, Rubner MF (2004) Nano Lett 4(7):17–19

    Article  CAS  Google Scholar 

  37. Zhang X, Kono H, Liu Z, Nishimoto S, Tryk Da, Murakami T, Sakai H, Abe M, Fujishima A (2007) Chem Commun 46:4949

    Article  CAS  Google Scholar 

  38. Young T (1805) Phil Trans R Soc Lond 95:609–612

    Google Scholar 

  39. Jafari R, Farzaneh M (2010) Appl Phys A Mater Sci Process 102(1):195–199

    Google Scholar 

  40. Ogihara H, Katayama T, Saji T (2011) J Colloid Interface Sci 362(2):560–566

    Article  CAS  Google Scholar 

  41. Wenzel RN (1936) J Ind Eng Chem 28(8):988–994

    Article  CAS  Google Scholar 

  42. Barshilia HC, Rajam K (2011) Nanosci Nanotechnol Lett 3(3):300–305

    Article  CAS  Google Scholar 

  43. Carre A, Mittal K (2009) Superhydrophobic surfaces. Koninklije Brill NV, Leiden

    Google Scholar 

  44. Cassie ABD, Baxter S (1944) Trans Faraday Soc 40:546–551

    Google Scholar 

  45. Xia YE, Ming Z, Da-lin J, Jian LI, Lan CAI (2010) J Cent S Univ Technol 17:554–559

    Article  CAS  Google Scholar 

  46. Brown PS, Berson A, Talbot EL, Wood TJ, Schofield WCE, Bain CD, Badyal JPS (2011) Langmuir 27(22):13897–13903

    Article  CAS  Google Scholar 

  47. Ishino C, Okumura K (2008) Eur Phys J E 25(4):415–424

    Article  CAS  Google Scholar 

  48. Ishino C, Okumura K, Quere D (2004) Europhys Lett 68(3):419–425

    Article  CAS  Google Scholar 

  49. Patankar Na (2004) Langmuir 20(17):7097–102

    Article  CAS  Google Scholar 

  50. Bormashenko E, Grynyov R (2012) Colloids Surf B 92:367–371

    Article  CAS  Google Scholar 

  51. Wolansky G, Marmur A (1999) Colloids Surf A 156(1–3):381–388

    Article  CAS  Google Scholar 

  52. Brandon S, Haimovich N, Yeger E, Marmur A (2003) J Colloid Interface Sci 263(1):237–243

    Article  CAS  Google Scholar 

  53. Strobel M, Lyons CS (2011) Plasma Process Polym 8(1):8–13

    Article  CAS  Google Scholar 

  54. Kietzig A-M (2011) Plasma Process Polym 8(11):1003–1009

    Article  CAS  Google Scholar 

  55. Müller M, Oehr C (2011) Plasma Process Polym 8(1):19–24

    Article  CAS  Google Scholar 

  56. Clifton B (1982) J Fluid Mech 118:27–40

    Article  Google Scholar 

  57. Tadmor R (2004) Langmuir 20(18):7659–7664

    Article  CAS  Google Scholar 

  58. Montes Ruiz-Cabello FJ, Rodríguez-Valverde MA, Cabrerizo-Vílchez Ma (2011) Plasma Process Polym 8(5):363–366

    Article  CAS  Google Scholar 

  59. Mundo RD, Palumbo F, D’Agostino R (2008) Langmuir 24(9):5044–5051

    Article  CAS  Google Scholar 

  60. Chen W, Fadeev AY, Hsieh MC, Öner D, Youngblood J, McCarthy TJ (1999) Langmuir 15(10):3395–3399

    Article  CAS  Google Scholar 

  61. Balu B, Breedveld V, Hess DW (2008) Langmuir 24(9):4785–4790

    Article  CAS  Google Scholar 

  62. Favia P, Cicala G, Milella A, Palumbo F, Rossini P, DAgostino R (2003) Surf Coat Technol 169–170:609–612

    Article  CAS  Google Scholar 

  63. Saraf R, Lee HJ, Michielsen S, Owens J, Willis C, Stone C, Wilusz E (2011) J Mater Sci 46(17):5751–5760

    Article  CAS  Google Scholar 

  64. Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Spectrochem Acta Part A 61(1):2–30

    Article  CAS  Google Scholar 

  65. Grill A (1994) Cold plasma in materials fabrication: from fundamentals to applications. IEEE Press, New York

    Book  Google Scholar 

  66. Weltmann KD, Kindel E, vonWoedtke T, Hähnel M, Stieber M, Brandenburg R (2010) Pure Appl Chem 82(6):1223–1237

    Article  CAS  Google Scholar 

  67. Weltmann K-D, Kindel E, Brandenburg R, Meyer C, Bussiahn R, Wilke C, vonWoedtke T (2009) Contrib Plasma Phys. 49(9):631–640

    Article  Google Scholar 

  68. Amanatides E, Mataras D (2007) Modeling and diagnostics of He discharges for treatment of polymers. In: D’Agostino R, Favia P, Kawai Y, Ikegami H, Sato N, Arefi-khonsari F (eds) Advanced plasma technology. Wiley-VCH, London, pp 55–74

    Chapter  Google Scholar 

  69. Chu PK, Qin S, Chan C, Cheung NW, Larson LA (1996) Mater Sci Eng 17(6–7):207–280

    Article  CAS  Google Scholar 

  70. Dave PN, Joshi AK (2010) J Sci Ind Res 69(3):177–179

    CAS  Google Scholar 

  71. Chattopadhyay R (2004) Advanced thermally assisted surface engineering processes. Kluwer, Dordrecht

    Google Scholar 

  72. Ohmori A, Hirano S (1993) J Therm Spray Technol 2(June):137–144

    Article  CAS  Google Scholar 

  73. Horrocks AR, Nazaré S, Masood R, Kandola B, Price D (2011) Polym Adv Technol 22(1):22–29

    Article  CAS  Google Scholar 

  74. Chapman B (1980) Glow discharge processes. Wiley, New York

    Google Scholar 

  75. Ellinas K, Tserepi a, Gogolides E (2011) Langmuir 27(7):3960–3969

    Article  CAS  Google Scholar 

  76. Park J, Lim H, Kim W, Ko JS (2011) J Colloid Interface Sci 360(1):272–279

    Article  CAS  Google Scholar 

  77. Takahashi T, Hirano Y, Takasawa Y, Gowa T, Fukutake N, Oshima A, Tagawa S, Washio M (2011) Radiat Phys Chem 80(2):253–256

    Article  CAS  Google Scholar 

  78. Han Y, Manolach SO, Denes F, Rowell RM (2011) Carbohydr Polym 86(2):1031–1037

    Article  CAS  Google Scholar 

  79. Cortese B, Morgan H (2012) Langmuir 28(1):896–904

    Article  CAS  Google Scholar 

  80. Lacroix L-M, Ceriotti L, Kormunda M, Meziani T, Colpo P (2005) Surf Sci 592(1–3):182–188

    Article  CAS  Google Scholar 

  81. Milella A, Di Mundo R, Palumbo F, Favia P, Fracassi F, D’Agostino R (2009) Plasma Process Polym 6(6–7):460–466

    Article  CAS  Google Scholar 

  82. Wohlfart E, Fernandez-Blazquez JP, Arzt E, Del Campo A (2011) Plasma Process Polym 8(9):876–884

    Article  CAS  Google Scholar 

  83. Fernández-Blázquez JP, Fell D, Bonaccurso E, delCampo A (2011) J Colloid Interface Sci 357(1):234–238

    Article  CAS  Google Scholar 

  84. Teshima K, Sugimura H, Inoue Y, Takai O, Takano A (2005) Appl Surf Sci 244(1–4):619–622

    Article  CAS  Google Scholar 

  85. Carbone E, Boucher N, Sferrazza M, Reniers F (2010) Surf Interface Anal 42(6–7):1014–1018

    Article  CAS  Google Scholar 

  86. Chien H-H, Ma K-J, Yeh Y-P, Chao C-L (2011) In: Proceedings of 2011 international conference on electronic and mechanical engineering and information technology, pp 1215–1218

  87. Vandencasteele N, Fairbrother H, Reniers F (2005) Plasma Process Polym 2(6):493–500

    Article  CAS  Google Scholar 

  88. Vandencasteele N, Nisol B, Viville P, Lazzaroni R, Castner DG, Reniers F (2008) Plasma Process Polym 5(7):661–671

    Article  CAS  Google Scholar 

  89. Fresnais J, Chapel J, Poncinepaillard F (2006) Surf Coat Technol 200(18–19):5296–5305

    Article  CAS  Google Scholar 

  90. Lobo AO, Ramos SC, Antunes EF, Marciano FR, Trava-Airoldi VJ, Corat EJ (2012) Mater Lett 70:89–93

    Article  CAS  Google Scholar 

  91. Siow KS, Britcher L, Kumar S, Griesser HJ (2006) Plasma Process Polym 3(6–7):392–418

    Article  CAS  Google Scholar 

  92. Morent R, De Geyter N, Desmet T, Dubruel P, Leys C (2011) Plasma Process Polym 8(3):171–190

    Article  CAS  Google Scholar 

  93. Woodward I, Schofield WCE, Roucoules V, Badyal JPS (2003) Langmuir 19(20):3432–3438

    Article  CAS  Google Scholar 

  94. Woodward IS, Schofield WCE, Roucoules V, Bradley TJ, Badyal JPS (2006) Plasma Chem Plasma Process 26(5):507–516

    Article  CAS  Google Scholar 

  95. Yasuda H (1985) Plasma polymerization. Academic Press, London

    Google Scholar 

  96. Os MTV (2000) Surface modification by plasma polymerization: film deposition, tailoring of surface properties and biocompatibility. Print Partners Ipskamp, Enschede

    Google Scholar 

  97. Gaur S, Vergason G (2000) In: society of vacuum coaters, 43rd annual technical conference proceedings, Society of Vacuum Coaters, Denver

  98. Hegemann D, Hossain MM, Körner E, Balazs DJ (2007) Plasma Process Polym 4(3):229–238

    Article  CAS  Google Scholar 

  99. Yasuda H, Matsuzawa Y (2005) Plasma Process Polym 2(6):507–512

    Article  CAS  Google Scholar 

  100. Pulpytel J, Kumar V, Peng P, Micheli V, Laidani N, Arefi-Khonsari F (2011) Plasma Process Polym 8(7):664–675

    Article  CAS  Google Scholar 

  101. Lommatzsch U, Ihde J (2009) Plasma Process Polym 6(10):642–648

    Article  CAS  Google Scholar 

  102. Ward L, Schofield W, Badyal J, Goodwin A, Merlin P (2003) Langmuir 19(6):2110–2114

    Article  CAS  Google Scholar 

  103. Teare DOH, Spanos CG, Ridley P, Kinmond EJ, Roucoules V, Badyal JPS, Brewer Sa, Coulson S, Willis C (2002) Chem Mater 14(11):4566–4571

    Article  CAS  Google Scholar 

  104. Coulson SR, Woodward IS, Badyal JPS, Brewer Sa, Willis C (2000) Langmuir 16(15):6287–6293

    Article  CAS  Google Scholar 

  105. Tedrow PK, Reif R (1994) Plasma-enhanced chemical vapor deposition. In: ASM metals handbook vol 5-surface engineering, pp 1524–1536

  106. Hare E, Shafrin E, Zisman W (1954) J Phys Chem 58(3):236–239

    Article  CAS  Google Scholar 

  107. Vandencasteele N, Reniers F (2010) J Electron Spectrosc Relat Phenom 178–179:394–408

    Article  CAS  Google Scholar 

  108. Dutoit F, Sanderson R, Engelbrecht W, Wagener J (1995) J Fluorine Chem 74(1):43–48

    Article  CAS  Google Scholar 

  109. Satyaprasad A, Jain V, Nema S (2007) Appl Surf Sci 253(12):5462–5466

    Article  CAS  Google Scholar 

  110. Yang GH, Zhang Y, Kang ET, Neoh KG, Huan ACH, Lai DMY (2002) J Mater Sci 12(3):426–431

    CAS  Google Scholar 

  111. Zhang Y, Kang ET, Neoh KG, Huang W, Huan ACH, Zhang H, Lamb RN (2002) Polymer 43(26):7279–7288

    Article  CAS  Google Scholar 

  112. Laguardia L, Ricci D, Vassallo E, Cremona A, Mesto E, Grezzi F, Dellera F (2007) Macromol Symp 247(1):295–302

    Article  CAS  Google Scholar 

  113. Prat R, Koh YJ, Babukutty Y, Kogoma M, Okazaki S, Kodama M (2000) Polymer 41(20):7355–7360

    Article  CAS  Google Scholar 

  114. Gonza R, Lo F, Navarro F, Da F, Ramos J (2009) J Appl Polym Sci 112(c):479–488

    Google Scholar 

  115. Bera PP, Francisco JS, Lee TJ (2010) In: Proceedings of the national academy of sciences of the United States of America 107(20):9049–9054

    Google Scholar 

  116. Steenland K, Fletcher T, Savitz Da (2010) Environ Health Perspect 118(8):1100–1108

    Article  CAS  Google Scholar 

  117. Menini R, Farzaneh M (2009) Surf Coat Technol 203(14):1941–1946

    Article  CAS  Google Scholar 

  118. Ji Y, Hong Y, Lee S, Kim S (2008) Surf Coat Technol 202(22–23):5663–5667

    Article  CAS  Google Scholar 

  119. Favia P, Agostino R, Fracassi F, Chimica D, Bari U (1994) Plasma Surf Diagn 66(6):1373–1380

    CAS  Google Scholar 

  120. Inomata K, Ha H, Chaudhary KA, Koinuma H (1993) Appl Phys Lett 64(1):46–48

    Article  Google Scholar 

  121. Costacurta S, Falcaro P, Vezzù S, Colasuonno M, Scopece P, Zanchetta E, Guglielmi M, Patelli A (2011) J Sol–Gel Sci Technol 60(3):340–346

    Article  CAS  Google Scholar 

  122. Ji Y, Kim S, Kwon O, Lee S (2009) Appl Surf Sci 255(8):4575–4578

    Article  CAS  Google Scholar 

  123. Shirtcliffe N, Thiemann P, Stratmann M, Grundmeier G (2001) Surf Coat Technol 142–144:1121–1128

    Article  CAS  Google Scholar 

  124. Nogueira S, Tan IH, Furlan R, Brazil SP, Rico P (2006) Revista Brasileira de Aplicações de Vácuo 25(1):45–53

    CAS  Google Scholar 

  125. Rouessac V, Ungureanu A, Bangarda S, Deratani A, Lo C-H, Wei T-C, Lee K-R, Lai J-Y (2011) Chem Vap Depos 17(7–9):198–203

    Article  CAS  Google Scholar 

  126. Siliprandi Ra, Zanini S, Grimoldi E, Fumagalli FS, Barni R, Riccardi C (2011) Plasma Chem Plasma Process 31(2):353–372

    Article  CAS  Google Scholar 

  127. Foroughi Mobarakeh L, Jafari R, Farzaneh M (2011) Adv Mater Res 409:783–787

    Article  CAS  Google Scholar 

  128. Cho SC, Hong YC, Cho SG, Ji YY, Han CS, Uhm HS (2009) Curr Appl Phys 9(6):1223–1226

    Article  Google Scholar 

  129. Kim J-H, Liu G, Kim SH (2006) J Mater Sci 16(10):977

    CAS  Google Scholar 

  130. Sarkar DK, Farzaneh M, Paynter RW (2010) Appl Surf Sci 256(11):10–13

    Article  CAS  Google Scholar 

  131. Aliev AD, Boinovich LB, Bukhovets VL, Emelyanenko AM, Gorbunov AM, Gorodetskii AE, Pashinin AS (2011) Nanotech Russ 6(11–12):723–732

    Article  Google Scholar 

  132. Nisoa M, Wanichapichart P (2010) Songklanakrin J Sci Tech 32(1):97–101

    CAS  Google Scholar 

  133. Koshel D, Terreault B, Abel G, Ducharme P, Ross G, Savoie S (2002) Thin Solid Films 405(1–2):104–108

    Article  Google Scholar 

  134. Wang D, Yang Q, Guo Y, Liu X, Shi J, Zhang J (2011) Mater Lett 65(15–16):2526–2529

    Article  CAS  Google Scholar 

  135. Tomovska R, Daniloska V, Asua JM (2011) J Mater Sci 21(43):17492

    CAS  Google Scholar 

  136. Gan WY, Lam SW, Chiang K, Amal R, Zhao H, Brungs MP (2007) J Mater Sci 17(10):952

    CAS  Google Scholar 

  137. Borras A, Barranco A, González-Elipe AR (2008) Langmuir 24(15):8021–8026

    Article  CAS  Google Scholar 

  138. Zhang J, Huang W, Han Y (2006) Langmuir 22(18):2946–2950

    Article  CAS  Google Scholar 

  139. Li G, Chen T, Yan B, Ma Y, Zhang Z, Yu T, Shen Z, Chen H, Wu T (2008) Appl Phys Lett 92(17):173104

    Article  CAS  Google Scholar 

  140. Zhou X, Guo X, Ding W, Chen Y (2008) Appl Surf Sci 255(5):3371–3374

    Article  CAS  Google Scholar 

  141. Qi HJU, Fu YB, Wang D, Yang XX, Sui KY, Ma ZL (2000) Surf Coat Technol 131(1–3):177–180

    Article  CAS  Google Scholar 

  142. Jaszewski R, Schifta H, Schnydera B, Schneuwlyb A, Gröningb P (1999) Appl Surf Sci 143(1–4):301–308

    Article  CAS  Google Scholar 

  143. Golub Ma, Wydeven T, Johnson AL (1998) Langmuir 14(8):2217–2220

    Article  CAS  Google Scholar 

  144. Biederman H, Zeuner M, Zalman J, Blkova P (2001) Thin Solid Films 392(2):208–213

    Article  CAS  Google Scholar 

  145. Ryan ME, Fonseca LC, Tasker S, Badyal JPS (1995) J Phys Chem 99(18):7060–7064

    Article  CAS  Google Scholar 

  146. Drábik M, Polonskyi O, Kylián O, Čechvala J, Artemenko A, Gordeev I, Choukourov A, Slav D (2010) Plasma Process 7(7):544–551

    Article  CAS  Google Scholar 

  147. Kylián O, Drábik M, Polonskyi O, Čechvala J, Artemenko A, Gordeev I, Choukourov A, Matolínová I, Slavínská D, Biederman H (2011) Thin Solid Films 519(19):6426–6431

    Article  CAS  Google Scholar 

  148. Stelmashuk V, Biederman H, Slavinska D, Zemek J, Trchova M (2005) Vacuum 77(2):131–137

    Article  CAS  Google Scholar 

  149. Li G, Wang B, Liu Y, Tan T, Song X, Li E, Yan H (2008) Sci Technol Adv Mater 9(2):025006

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Jafari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jafari, R., Asadollahi, S. & Farzaneh, M. Applications of Plasma Technology in Development of Superhydrophobic Surfaces. Plasma Chem Plasma Process 33, 177–200 (2013). https://doi.org/10.1007/s11090-012-9413-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-012-9413-9

Keywords

Navigation