Skip to main content

Advertisement

Log in

Synthesis and Characterization of Nanostructured a-C:H (Hydrogenated Amorphous Carbon) Thin Films by Gaseous Thermionic Vacuum Arc (G-TVA) Deposition Technique

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The aim of this contribution is to present the properties of the nanostructured hydrogenated carbon thin films and to study their growth carried out in a special deposition technique based on Thermionic Vacuum Arc method. The Gaseous Thermionic Vacuum Arc (G-TVA) technology is an original deposition method performed in a special configuration, consisting of a heated thermionic cathode which provides an electron beam on the anode. The surface free energy was evaluated by contact angle and their optical properties were studied by Filmetrics F20 spectrometry system. Structure of the film has been investigated by Raman spectroscopy as well as the mechanical properties like hardness, wear resistance, film-substrate adhesion. The films showed two distinct Raman characteristic peaks located at 1,350 cm−1 (D-line) and 1,550 cm−1 (G-line), broad for Si and very sharp for glass substrates. The G-TVA enables to prepare soft (hardness ~6 GPa) or hard (~24 GPa) films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aisenberg S, Chabot R (1971) J Appl Phys 42:2953

    Article  ADS  Google Scholar 

  2. Robertson J (1990) Mater Sci Forum 52:125

    Article  Google Scholar 

  3. Robertson J (1991) In: Clausing R, et al. (eds) NATO-ASI series B: physics. vol. 266, Plenum, New York

  4. Matsuo H, Kanasugi K, Ohgoe Y, Hirakuri KK, Fukui Y (2009) Diamond Relat Mater 18:1031–1034

    Article  ADS  Google Scholar 

  5. Robertson J (2002) Mater Sci Eng R Rep 37:129–281

    Article  Google Scholar 

  6. Shiue ST, He JL, Pan LY, Huang ST (2002) Thin Solid Films 406:210–214

    Article  ADS  Google Scholar 

  7. Shiue ST, Hsiao HH, Shen TY, Lin HC, Lin KM (2005) Thin Solid Films 483:140–146

    Article  ADS  Google Scholar 

  8. Tomasella E, Meunier C, Mikhailov S (2001) Surf Coat Technol 141:286–296

    Article  Google Scholar 

  9. Cuong NK, Tahara M, Yamauchi N, Sone T (2003) Surf Coat Technol 174:1024–1028

    Article  Google Scholar 

  10. Jian SR, Fang TH, Chuu DS (2004) J Non-Cryst Solids 333:291–295

    Article  ADS  Google Scholar 

  11. Liu Y, Liu C, Chen Y, Tzeng Y, Tso P, Lin I (2004) Diam Relat Mater 13:671–678

    Article  ADS  Google Scholar 

  12. Fanchini G, Tagliaferro A, Popescu B, Davis EA (2002) J Non-Cryst Solids 299:846–851

    Article  ADS  Google Scholar 

  13. Baydogăn ND (2004) Mater Sci Eng B 107:70–77

    Article  Google Scholar 

  14. Paterson MJ (1998) Diam Relat Mater 7:908

    Article  MathSciNet  ADS  Google Scholar 

  15. Musa G, Mustata I, Ciupina V, Vladoiu R, Prodan G, Vasile E, Ehrich H (2004) Diamond Relat Mater 13:1398

    Article  ADS  Google Scholar 

  16. Vladoiu R, Ciupina V, Surdu-Bob C, Lungu CP, Janik J, Skalny JD et al (2007) J Optoelectron Adv M 9:862

    Google Scholar 

  17. Surdu-Bob C, Vladoiu R, Badulescu M, Musa G (2008) Diamond Relat Mater 17:1625

    Article  ADS  Google Scholar 

  18. Musa G, Surdu-Bob C, Lungu CP, Vladoiu R (2007) J Optoelectron Adv M 9:867–870

    Google Scholar 

  19. Dorrer C, Ruhe J (2009) Soft Matter 5:51–56

    Article  ADS  Google Scholar 

  20. Berg JC (1993) Wettability. Marcel Dekker, New York

    Google Scholar 

  21. Chan CM (1994) Polymer surface modification and characterization. Hanser, Munich

    Google Scholar 

  22. Garbassi F, Morra M, Occhiello E (1998) Polymer surfaces. From physics to technology. Wiley, Chichester

    Google Scholar 

  23. Marmur A (2006) Soft Matter 2:12–17

    Article  ADS  Google Scholar 

  24. Bursikova V, Stahel P, Navratil Z, Bursik J, Janca J (2004) Masaryk University Brno

  25. Ferrari AC, Robertson J (2000) Phys Rev B 61:14095

    Article  ADS  Google Scholar 

  26. Ferrari AC, Robertson J (2001) Phys Rev B 64:075414

    Article  ADS  Google Scholar 

  27. Casiraghi C, Ferrari AC, Robertson J, Ohr R, Gradowski Mv, Schneider D (2004) Diamond Relat Mater 13:1480

    Article  ADS  Google Scholar 

  28. Robertson J (2002) Mater Sci Eng 37:129–281

    Article  Google Scholar 

  29. Zhou Y, Wang B, Song X, Li E, Li G, Zhao S, Yan H (2006) Appl Surf Sci 253:2690–2694

    Article  ADS  Google Scholar 

  30. Pharr GM, Oliver WC, Brotzen FR (1992) J Mater Res 7:613–617

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the strategic grant POSDRU/89/1.5/S/58852, Project “Postdoctoral programme for training scientific researchers” cofinanced by the European Social Found within the Sectorial Operational Program Human Resources Development 2007–2013. The nanoindentation tests were supported by the Academy of Science of the Czech Republic in the frame of project KAN311610701.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirela Contulov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vladoiu, R., Ciupina, V., Contulov, M. et al. Synthesis and Characterization of Nanostructured a-C:H (Hydrogenated Amorphous Carbon) Thin Films by Gaseous Thermionic Vacuum Arc (G-TVA) Deposition Technique. Plasma Chem Plasma Process 32, 219–229 (2012). https://doi.org/10.1007/s11090-011-9344-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-011-9344-x

Keywords

Navigation