Skip to main content
Log in

Effects of Sulphate Deposits on Corrosion Behaviour of Fe-Based Alloys in Wet CO2 Gas at 750 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The corrosion behaviour of several model and commercial Fe-based alloys, all with 25 wt% Cr, in CO2–H2O gases at 750 °C with and without sulphate deposits was studied. In the absence of sulphate deposits, ferritic alloys Fe–25Cr and Fe–25Cr–2Mn–1Si outperformed austenitic alloys Fe–25Cr–20Ni and 310 stainless steel. This pattern of behaviour is explained from the viewpoint of chromia and silica layer formation, using approximate analyses based on well-established diffusion models. Sulphate deposits exerted different effects on external scaling and internal sulphidation of the ferritic and austenitic alloys. Interactions between sulphur and metal cations at chromia grain boundaries are considered to be responsible for these effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. B. J. P. Buhre, L. K. Elliott, C. D. Sheng, R. P. Gupta and T. F. Wall, Progress in Energy and Combustion Science 31, 2005 (283).

    Article  CAS  Google Scholar 

  2. K. Chandra, A. Kranzmann, R. S. Neumann, G. Oder and F. Rizzo, Oxidation of Metals 83, 2015 (291).

    Article  CAS  Google Scholar 

  3. J. P. Abellán, T. Olszewski, G. H. Meier, L. Singheiser and W. J. Quadakkers, International Journal of Materials Research 101, 2010 (287).

    Article  CAS  Google Scholar 

  4. J. P. Abellán, T. Olszewski, H. J. Penkalla, G. H. Meier, L. Singheiser and W. J. Quadakkers, Materials at High Temperature 26, 2009 (63).

    Article  CAS  Google Scholar 

  5. Z. Liang, M. Yu, Y. Gui and Q. Zhao, JOM 70, 2018 (1464).

    Article  CAS  Google Scholar 

  6. D. Huenert and A. Kranzmann, Corrosion Science 53, 2011 (2306).

    Article  CAS  Google Scholar 

  7. P. Huczkowski, S. Najima, A. Chyrkin, D. Grüner and W. J. Quadakkers, Materials at High Temperature 35, 2018 (275).

    Article  CAS  Google Scholar 

  8. G. Stein-Brzozowska, R. Norling, P. Viklund, J. Maier and G. Scheffknecht, Energy Procedia 51, 2014 (135).

    Article  CAS  Google Scholar 

  9. I. Ja’baz, J. Chen, B. Etschmann, Y. Ninomiya and L. Zhang, Proceedings of the Combustion Institute 36, 2017 (3941).

    Article  CAS  Google Scholar 

  10. K. P. Lillerud and P. Kofstad, Oxidation of Metals 21, 1984 (233).

    Article  CAS  Google Scholar 

  11. F. Pettit, Oxidation of Metals 76, 2011 (1).

    Article  CAS  Google Scholar 

  12. N. Otsuka, Materials Science Forum 696, 2011 (206).

    Article  CAS  Google Scholar 

  13. T. Hussain, A. U. Syed and N. J. Simms, Fuel 113, 2013 (787).

    Article  CAS  Google Scholar 

  14. B. Grégoire, X. Montero, M. C. Galetz, G. Bonnet and F. Pedraza, Corrosion Science 141, 2018 (211).

    Article  CAS  Google Scholar 

  15. T. Gheno and B. Gleeson, Oxidation of Metals 84, 2015 (567).

    Article  CAS  Google Scholar 

  16. Z. Zeng, K. Natesan, Z. Cai and D. L. Rink, Fuel 117, 2014 (133).

    Article  CAS  Google Scholar 

  17. T. Hussain, A. U. Syed and N. J. Simms, Oxidation of Metals 80, 2013 (529).

    Article  CAS  Google Scholar 

  18. T. Dudziak, T. Hussain, D. Orlicka, A. Pokrywa and N. J. Simms, Materials and Corrosion 66, 2015 (839).

    Article  CAS  Google Scholar 

  19. P. Castello, V. Guttmann, N. Farr and G. Smith, Materials and Corrosion 51, 2000 (786).

    Article  CAS  Google Scholar 

  20. Y. Xie, Y. Cai, J. Zhang, B. Gleeson, and D. J. Young, Corrosion Science (to be submitted).

  21. E. M. Levin and H. F. McMurdie, Phase Diagrams for Ceramists, 1975 Supplement, (The American Ceramic Society, 1975).

  22. Y. Xie, T. D. Nguyen, J. Zhang and D. J. Young, Corrosion Science 146, 2019 (28).

    Article  CAS  Google Scholar 

  23. R. K. S. Raman, B. Gleeson and D. J. Young, Materials Science and Technology 14, 1998 (373).

    Article  CAS  Google Scholar 

  24. J. H. Kim and I. S. Hwang, Nuclear Engineering and Design 235, 2005 (1029).

    Article  CAS  Google Scholar 

  25. P. Huczkowski, S. Najima, A. Chyrkin and W. J. Quadakkers, JOM 70, 2018 (1502).

    Article  CAS  Google Scholar 

  26. A. Chyrkin, P. Huczkowski, V. Shemet, L. Singheiser and W. J. Quadakkers, Oxidation of Metals 75, 2011 (143).

    Article  CAS  Google Scholar 

  27. T. Dudziak, V. Deodeshmukh, L. Backert, N. Sobczak, M. Witkowska, W. Ratuszek, K. Chruściel, A. Zieliński, J. Sobczak and G. Bruzda, Oxidation of Metals 87, 2017 (139).

    Article  CAS  Google Scholar 

  28. C. Wagner, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 63, 1959 (772).

    CAS  Google Scholar 

  29. R. A. Rapp, Acta Metallurgica 9, 1961 (730).

    Article  CAS  Google Scholar 

  30. J. Takada and M. Adachi, Journal of Materials Science 21, 1986 (2133).

    Article  CAS  Google Scholar 

  31. J. Takada, S. Yamamoto, S. Kikuchi and M. Adachi, Metallurgical Transactions A 17, 1986 (221).

    Article  Google Scholar 

  32. R. Braun and M. Feller-Kniepmeier, Physica Status Solidi (a) 90, 1985 (553).

    Article  CAS  Google Scholar 

  33. A. F. Smith and G. B. Gibbs, Metal Science Journal 3, 1969 (93).

    Article  Google Scholar 

  34. P. I. Williams and R. G. Faulkner, Journal of Materials Science 22, 1987 (3537).

    Article  CAS  Google Scholar 

  35. J. Swisher and E. Turkdogan, AIME Metallurgical Society Transactions 239, 1967 (426).

    CAS  Google Scholar 

  36. C. Wagner, Journal of the Electrochemical Society 99, 1952 (369).

    Article  CAS  Google Scholar 

  37. T. D. Nguyen, J. Q. Zhang and D. J. Young, Corrosion Science 89, 2014 (220).

    Article  CAS  Google Scholar 

  38. T. D. Nguyen, J. Zhang and D. J. Young, Corrosion Science 100, 2015 (448).

    Article  CAS  Google Scholar 

  39. A. Kumar and D. L. Douglass, Oxidation of Metals 10, 1976 (1).

    Article  CAS  Google Scholar 

  40. T. D. Nguyen, J. Q. Zhang and D. J. Young, Oxidation of Metals 81, 2014 (549).

    Article  CAS  Google Scholar 

  41. T. D. Nguyen, J. Zhang and D. J. Young, Oxidation of Metals 87, 2017 (541).

    Article  CAS  Google Scholar 

  42. H. E. Evans and A. T. Donaldson, Oxidation of Metals 50, 1998 (457).

    Article  CAS  Google Scholar 

  43. R. J. Borg and D. Y. F. Lai, Journal of Applied Physics 41, 1970 (5193).

    Article  CAS  Google Scholar 

  44. K. Bohnenkamp and H.-J. Engell, Archiv für das Eisenhüttenwesen 35, 1964 (1011).

    Article  CAS  Google Scholar 

  45. I. Barin and G. Platzki, Thermochemical Data of Pure Substances, 3rd ed, (VCH, Weinheim, 1995).

    Book  Google Scholar 

  46. T. D. Nguyen, A. La Fontaine, J. M. Cairney, J. Zhang and D. J. Young, Materials at High Temperature 35, 2018 (22).

    Article  CAS  Google Scholar 

  47. L. Niewolak, D. J. Young, H. Hattendorf, L. Singheiser and W. J. Quadakkers, Oxidation of Metals 82, 2014 (123).

    Article  CAS  Google Scholar 

  48. D. Kim, C. Jang and W. S. Ryu, Oxidation of Metals 71, 2009 (271).

    Article  CAS  Google Scholar 

  49. T. D. Nguyen, J. Zhang and D. J. Young, Corrosion Science 112, 2016 (110).

    Article  CAS  Google Scholar 

  50. R. E. Lobnig and H. J. Grabke, Corrosion Science 30, 1990 (1045).

    Article  CAS  Google Scholar 

  51. X. G. Zheng and D. J. Young, Corrosion Science 36, 1994 (1999).

    Article  CAS  Google Scholar 

  52. S. Soltanattar, P. Nowakowski, C. S. Bonifacio, P. Fischione and B. Gleeson, Oxidation of Metals 91, 2019 (11).

    Article  CAS  Google Scholar 

  53. D. J. Young, T. D. Nguyen, P. Felfer, J. Q. Zhang and J. M. Cairney, Scripta Materialia 77, 2014 (29).

    Article  CAS  Google Scholar 

  54. T. D. Nguyen, A. La Fontaine, L. Yang, J. M. Cairney, J. Zhang and D. J. Young, Corrosion Science 132, 2018 (125).

    Article  CAS  Google Scholar 

  55. T. D. Nguyen, J. Q. Zhang and D. J. Young, Materials at High Temperature 32, 2015 (16).

    Article  CAS  Google Scholar 

  56. X. G. Zheng and D. J. Young, Materials Science Forum 251–254, 1997 (567).

    Article  Google Scholar 

  57. X. G. Zheng and D. J. Young, Oxidation of Metals 42, 1994 (163).

    Article  CAS  Google Scholar 

  58. C. Yu, J. Zhang and D. J. Young, Corrosion Science 112, 2016 (214).

    Article  CAS  Google Scholar 

  59. A. Atkinson and J. W. Gardner, Corrosion Science 21, 1981 (49).

    Article  CAS  Google Scholar 

  60. D. J. Young, International Journal of Hydrogen Energy 32, 2007 (3763).

    Article  CAS  Google Scholar 

  61. Z. Yu, M. Chen, C. Shen, S. Zhu and F. Wang, Corrosion Science 121, 2017 (105).

    Article  CAS  Google Scholar 

  62. H. Davies and W. W. Smeltzer, Journal of the Electrochemical Society 121, 1974 (543).

    Article  CAS  Google Scholar 

  63. D. N. H. Trafford and D. P. Whittle, Corrosion Science 20, 1980 (509).

    Article  CAS  Google Scholar 

  64. C. Yu, T. D. Nguyen, J. Q. Zhang and D. J. Young, Corrosion Science 98, 2015 (516).

    Article  CAS  Google Scholar 

  65. R. Hofman, J. G. F. Westheim, T. Fransen and P. J. Gellings, Materials and Manufacturing Processes 7, 1992 (227).

    Article  CAS  Google Scholar 

  66. G. R. Holcomb, J. Tylczak, G. H. Meier, B. S. Lutz, K. Jung, N. Mu, N. M. Yanar, F. S. Pettit, J. Zhu, A. Wise, D. E. Laughlin and S. Sridhar, Oxidation of Metals 80, 2013 (599).

    Article  CAS  Google Scholar 

  67. B. S. Lutz, G. R. Holcomb and G. H. Meier, Oxidation of Metals 84, 2015 (353).

    Article  CAS  Google Scholar 

  68. J. O. Andersson, T. Helander, L. Höglund, P. Shi and B. Sundman, Calphad 26, 2002 (273).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Australian Research Council (Grant No. DP190101574) for financial support under the Discovery Project Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqiang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Cai, Y., Zhang, J. et al. Effects of Sulphate Deposits on Corrosion Behaviour of Fe-Based Alloys in Wet CO2 Gas at 750 °C. Oxid Met 95, 23–43 (2021). https://doi.org/10.1007/s11085-020-10010-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-020-10010-x

Keywords

Navigation