Skip to main content
Log in

Direct In-Situ Investigation of Selective Surface Oxidation During Recrystallization Annealing of a Binary Model Alloy

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The study of high temperature oxidation processes depends mainly on ex situ investigations after the high temperature process is completed. In this study Ambient Pressure Photoelectron Spectroscopy was used to investigate its potential for an in situ analysis of the underlying mechanisms of selective oxidation occurring during high temperature annealing. As an example, the evolution of the surface oxide states of an iron-manganese model alloy (with 2 wt% Mn) during an annealing step simulating recrystallization annealing was studied. It was shown that an investigation of the surface after the annealing step does not provide reliable information about the oxidation state during the annealing step. At low partial pressures of water in a forming gas atmosphere the kinetics of water dissociation on the surface are not high enough to provide enough oxygen for reaching the thermodynamically expected activities. This unexpected low oxygen activity on the surface is also shown to affect the uptake of hydrogen into the Fe–2Mn sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Martinez, R. Cremer, D. Neuschütz and A. Von Richtofen, Analytical and Bioanalytical Chemistry 374, 742 (2002).

    Article  Google Scholar 

  2. I. Olefjord, W. Leijon and U. Jelvestam, Applications of Surface Science 6, 241 (1980).

    Article  Google Scholar 

  3. X. V. Eynde, J. P. Servais and M. Lamberigts, Surface and Interface Analysis 35, 1004 (2003).

    Article  Google Scholar 

  4. M. Salmeron and R. Schlogl, Surface Science Reports 63, 169 (2008).

    Article  Google Scholar 

  5. S. Frenznick, S. Swaminathan, M. Stratmann and M. Rohwerder, Journal of Materials Science 45, 2106 (2010).

    Article  Google Scholar 

  6. S. Prabhudev Sagar, S. Swaminathan and M. Rohwerder, Corrosion Science 53, 2413 (2011).

    Article  Google Scholar 

  7. H. Liu, Y. He, S. Swaminathan, L. Li and M. Rohwerder, Surface and Coatings Technology 206, 1237 (2011).

    Article  Google Scholar 

  8. I. Cvijovic, I. Parezanovic and M. Spiegel, Corrosion Science 48, 980 (2006).

    Article  Google Scholar 

  9. M. Blumenau, M. Norden, F. Friedel and K. Peters, Surface&Coatings Technology 206, 559 (2011).

    Article  Google Scholar 

  10. H. H. Johnson and A. R. Troiano, Nature 179, 777 (1957).

    Article  Google Scholar 

  11. N. Eliaz, A. Shachar, B. Tal and D. Eliezer, Engineering Failure Analysis 9, 176 (2002).

    Google Scholar 

  12. M. Koyama, C. C. Tasan, E. Akiyama, K. Tsuzaki and D. Raabe, Acta Materialia 70, 174 (2014).

    Article  Google Scholar 

  13. J. J. Yeh and I. Lindau, Atomic Data and Nuclear Data Tables 32, 1 (1985).

    Article  Google Scholar 

  14. S. Swaminathan and M. Rohwerder, DSS 309, 203 (2010).

    Google Scholar 

  15. H. H. Johnson, Metallurgical Transactions A 19, 2371 (1988).

    Article  Google Scholar 

  16. G. Ertl, M. Huber, S. B. Lee, Z. Paal and M. Weiss, Applications of Surface Science 8, 373 (1981).

    Article  Google Scholar 

  17. H. J. Grabke, ISIJ International 29, 529 (1989).

    Article  Google Scholar 

Download references

Acknowledgments

Dr. Knop-Gericke is acknowledged for his valuable help and advice at the beam line and Dr. M. Auinger for the FactSage calculation of Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rohwerder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borodin, S., Vogel, D., Swaminathan, S. et al. Direct In-Situ Investigation of Selective Surface Oxidation During Recrystallization Annealing of a Binary Model Alloy. Oxid Met 85, 51–63 (2016). https://doi.org/10.1007/s11085-015-9578-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9578-8

Keywords

Navigation