Skip to main content
Log in

Degradation Behaviour of HR-120 Alloy Exposed to CH4–CO–H2–H2O Mixed-Gas Environments at 950 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The HR-120 alloy is a candidate structural material for heat-exchanger reactors of steam methane reforming. Consequently, the behaviour at high-temperature of this alloy in oxidizing/carburizing atmosphere is of considerable interest for industrial applications. In this study, the behaviour of HR-120 alloy was evaluated in Ar, CH4, CO, H2, H2O oxidant/carburizing gas mixtures at 1,223 K, with or without pre-oxidation. In the former case, the as-grown scale layer consisted of inner Cr2O3 layer and an outer MnCr2O4 spinel layer. This scale structure, which is completely transformed into carbide layer in Ar–CH4 atmosphere, exhibits an excellent stability in CH4, CO, H2, H2O gas mixture. However, the oxidation of particles rich in Nb promoted cracking and spalling of protective scale layer, resulting in exposure of substrate metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. D. Kim, C. Jang and W. S. Ryu, Oxidation characteristics and oxide layer evolution of alloy 617 and Haynes 230 at 900 °C and 1100 °C. Oxidation of Metals 71, 271–293 (2009).

    Article  Google Scholar 

  2. H. J. Christ, U. Kunecke, K. Meyer and H. G. Sockel, High temperature corrosion of the nickel-base alloy inconel 617 in helium containing small amounts of impurities. Material Science Engineering 87, 161–168 (1987).

    Article  Google Scholar 

  3. L. W. Graham, Corrosion of metallic materials in HTR-helium environments. Journal of Nuclear Materials 171, 76–83 (1990).

    Article  Google Scholar 

  4. Haynes International Inc, Product Brochure, (Kokomo, Indiana, 1999).

    Google Scholar 

  5. P. R. Wilson and Z. Chen, The effect of manganese and chromium on surface oxidation products formed during batch annealing of low carbon steel strip. Corrosion Science 49, 1305–1320 (2007).

    Article  Google Scholar 

  6. D. L. Douglass and J. S. Armijo, The effect of silicon and manganese on the oxidation mechanism of Ni–20Cr. Oxidation of Metals 2, 207–231 (1970).

    Article  Google Scholar 

  7. A. L. Marasco and D. J. Young, The oxidation of iron chromium manganese alloys at 900 °C. Oxidation of Metals 36, 157–174 (1991).

    Article  Google Scholar 

  8. J. E. Hammer, S. J. Laney, R. W. Jackson, K. Coyne, F. S. Petit and G. H. Meier, The oxidation of ferritic stainless steels in simulated solid-oxide fuel-cell atmospheres. Oxidation of Metals 67, 1–38 (2007).

    Article  Google Scholar 

  9. B. Huchtemann and P. Schüler, Gas-metal reactions of a new Fe–Ni–Cr–W alloy in helium with reactive components and in an H2–CH4–H2S atmosphere in the temperature range 700–950 °C. Material Science Engineering 87, 197–203 (1987).

    Article  Google Scholar 

  10. A. Roine, HSC Chemistry 7.1. (Outokumpu Research Oy, Pori, Finland, 2002)

  11. R. E. Lobnig, H. P. Schmidt, K. Hennesen and H. J. Grabke, Diffusion of cations in chromia layers grown on iron-base alloys. Oxidation of Metals 37, 81–93 (1992).

    Article  Google Scholar 

  12. D. Young, High Temperature Oxidation and Corrosion of Metals, Chap. 7 (Elsevier Corrosion Series 1, 350, 2008)

  13. H. M. Tawancy, High-temperature oxidation behavior of a wrought Ni–Cr–W–Mn–Si–La alloy. Oxidation of Metals 45, 323–348 (1996).

    Article  Google Scholar 

  14. R. C. Yin, Thesis, King Fahd University of Petroleum & Minerals, Dhaharan, Saudi Arabia (2002)

  15. F. Rouillard, C. Cabet, K. Wolski and M. Pijolat, Oxide-layer formation and stability on a nickel-base alloy in impure helium at high temperature. Oxidation of Metals 68, 133–148 (2007).

    Article  Google Scholar 

  16. JANAF Thermodynamique Data, Dow Chemical Co., Midland, MI (1960–1961)

  17. I. M. Allam, Carburization/oxidation behavior of alloy Haynes-214 in methane-hydrogen gas mixtures. Oxidation of Metals 72, 127–144 (2009).

    Article  Google Scholar 

  18. R. C. Yin, I. M. Allam and A. Al-Farayedhi, Carburization behavior of 310 stainless steel in CH4/H2 gas mixture with trace amount of oxygen. Oxidation of Metals 60, 315–333 (2003).

    Article  Google Scholar 

  19. H. Li and W. Chen, High temperature carburization behaviour of Mn–Cr–O spinel oxides with varied concentrations of manganese. Corrosion Science 53, 2097–2105 (2011).

    Article  Google Scholar 

  20. S. Henry, Thèse de doctorat de l’Institut National Polytechnique de Grenoble (2000)

  21. H. Li, Y. Zheng, L. W. Benum, M. Oballa and W. Chen, Carburization behaviour of Mn–Cr–O spinel in high temperature hydrocarbon cracking environment. Corrosion Science 51, 2336–2341 (2009).

    Article  Google Scholar 

  22. N. Birks and G. H. Meier, F. S. Pettit, Introduction to the High-Temperature Oxidation of Metals, Chap. 4, 2nd edn. (Cambridge University Press, Cambridge, 2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. Tillous.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tillous, K.E., Dulcy, J. & Belmonte, T. Degradation Behaviour of HR-120 Alloy Exposed to CH4–CO–H2–H2O Mixed-Gas Environments at 950 °C. Oxid Met 82, 163–179 (2014). https://doi.org/10.1007/s11085-014-9484-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-014-9484-5

Keywords

Navigation