Skip to main content
Log in

Environmental Resistance of Mo–Si–B Alloys and Coatings

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

For high temperature application beyond the range of Ni-base superalloys, multiphase Mo–Si–B alloys with compositions, that yield the ternary intermetallic Mo5SiB2 (T2) phase as a key microstructure constituent together with the Mo and Mo3Si phases, offer an attractive balance of high melting temperature, oxidation resistance and mechanical properties. The investigation of reaction kinetics involving the T2 phase enables the analysis of oxidation in terms of diffusion pathways and the design of effective coatings. From this basis kinetic biasing is used together with pack cementation to develop multilayered coatings and in situ diffusion barriers with self-healing characteristics for enhanced oxidation resistance. While a combustion environment contains water vapor that can accelerate attack of silica based coatings, the current pack cementation coatings provide oxidation resistance in water vapor up to at least 1500 °C. An exposure to hot ionized gas species generated in an arc jet confirms the robust coating performance in extreme environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. H. Perepezko, Science 326, 2009 (1068).

    Article  CAS  Google Scholar 

  2. D. M. Dimiduk and J. H. Perepezko, MRS Bulletin 28, (9), 2003 (639).

    Article  CAS  Google Scholar 

  3. J. H. Perepezko, R. Sakidja and K. S. Kumar, “Mo-Si-B Alloys for Ultrahigh Temperature Applications”, Chapter 13 in Advanced Structural Materials: Properties, Design Optimization, and Applications, edited by W. Soboyejo (CRC Press, Boca Raton, FL, 2007) p.437.

  4. J.H. Perepezko, R. Sakidja, S. Kim, Z. Dong and J.S. Park J. H. Perepezko, R. Sakidja, in 3rd Int. Symp.on Structural Intermetallics, ed. by K. J. Hemker and D. M. Dimiduk, (TMS, Warrendale, PA, 2002) p.505.

  5. R. Sakidja and J. H. Perepezko, Journal of Nuclear Materials 366, 2007 (407).

    Article  CAS  Google Scholar 

  6. R. Sakidja, J. H. Perepezko, S. Kim and N. Sekido, Acta Materialia 56, 2008 (5223).

    Article  CAS  Google Scholar 

  7. J. H. Schneibel, R. O. Ritchie, J. J. Kruzic and P. F. Tortorelli, Metallurgical and Materials Transactions A 36A, 2005 (525).

    Article  CAS  Google Scholar 

  8. E. J. Opila, N. S. Jacobson, et al., JOM Journal of the Minerals Metals and Materials Society 58, (1), 2006 (22).

    Article  CAS  Google Scholar 

  9. H. E. Eaton and G. D. Linsey, Journal of the European Ceramic Society 22, [14–14], 2002 (2741).

  10. D. J. Meschi, W. A. Chupka and J. Berkowitz, Journal of Chemical Physics 33, (2), 1960 (530–533).

    Article  CAS  Google Scholar 

  11. T. A. Jackson, D. R. Eklund and A. J. Fink, Journal of Materials Science 39, 2004 (5905).

    Article  CAS  Google Scholar 

  12. J. J. Bertin and R. M. Cummings, Progress in Aerospace Science 39, 2003 (511).

    Article  Google Scholar 

  13. X. Zhang, P. Hu, J. Han and S. Meng, Composites Science and Technology 68, 2008 (1718).

    Article  CAS  Google Scholar 

  14. F. Monteverde, R. Savino and M. D. S. Fumo, Corrosion Science 53, 2011 (922).

    Article  CAS  Google Scholar 

  15. R. Savino, M. D. S. Fumo, L. Silvestroni and D. Sciti, Journal of European Ceramic Society 28, 2008 (1899).

    Article  CAS  Google Scholar 

  16. M. Gasch, D. Ellerby, E. Irby, S. Beckman, M. Gusman and S. Johnson, Journal of Materials Science 39, 2004 (5925).

    Article  CAS  Google Scholar 

  17. S. Kim and J. H. Perepezko, Journal of Phase Equilibria and Diffusion 27, (6), 2006 (605).

    CAS  Google Scholar 

  18. M. G. Mendiratta, T. A. Parthasarathy and D. M. Dimiduk, Intermetallics 10, 2002 (225).

    Article  CAS  Google Scholar 

  19. V. Supatarawanich, D. R. Johnson and C. T. Liu, Materials Science and Engineering A 344, 2003 (328).

    Article  Google Scholar 

  20. D. M. Berczik, United States Patent 5,595,616 (1997) and 5,693,156 (1997).

  21. J. S. Park, R. Sakidja and J. H. Perepezko, Scripta Materialia 46, 2002 (765).

    Article  CAS  Google Scholar 

  22. D. A. Helmick, G. H. Meier and F. S. Petit, Metallurgical and Materials Transactions A 36A, 2005 (3371).

    Article  CAS  Google Scholar 

  23. S. R. Levine and R. M. Caves, Journal of the Electrochemical Society 121, 1974 (1051).

    Article  CAS  Google Scholar 

  24. A. Mueller, G. Wang, R. A. Rapp, E. L. Courtright and T. A. Kircher, Materials Science and Engineering: A A155, 1992 (199).

    Article  CAS  Google Scholar 

  25. B. V. Cockram and R. A. Rapp, Metallurgical and Materials Transactions A 26A, 1995 (777).

    Article  Google Scholar 

  26. R. Sakidja, J. S. Park, J. Hamann and J. H. Perepezko, Scripta Materialia 53, 2005 (723).

    Article  CAS  Google Scholar 

  27. R. Sakidja, F. Rioult, J. Werner and J. H. Perepezko, Scripta Materialia 55, 2006 (903).

    Article  CAS  Google Scholar 

  28. J. H. Perepezko, J. S. Park and R. Sakidja, U. S. Patent No.7,005,191 (2006) and. No. 7,560,138 (2009).

  29. J. S. Kirkaldy and D. J. Young, Diffusion in the Condensed State, (Institute of Metals, London, 1987).

    Google Scholar 

  30. M. K. Meyer, A. J. Thom and M. Akinc, Intermetallics 7, 1999 (153).

    Article  CAS  Google Scholar 

  31. J. H. Perepezko, M. H. da Silva Bassani, J. S. Park, A. S. Edelstein and R. K. Everett, Materials Science and Engineering A 195, 1995 (1).

    Article  Google Scholar 

  32. R. Sakidja and J.H. Perepezko, to be published.

  33. A. J. Thom, M. J. Kramer, P. Mandal and M. Akinc, Scripta Materialia 53, 2005 (915–919).

    Article  CAS  Google Scholar 

  34. P. Mandal, A. J. Thom, M. J. Kramer, V. Behrani and M. Akinc, Materials Science and Engineering A 371, 2004 (335–343).

    Article  Google Scholar 

Download references

Acknowledgments

The support from the Office of Naval Research (N00014-10-1-0913, Dr. David A. Shifler, program manager) and collaboration with Dr. S. Splinter, NASA Langley are most gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Perepezko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perepezko, J.H., Sakidja, R. Environmental Resistance of Mo–Si–B Alloys and Coatings. Oxid Met 80, 207–218 (2013). https://doi.org/10.1007/s11085-013-9373-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-013-9373-3

Keywords

Navigation