Skip to main content
Log in

Substrate Depletion Analysis and Modeling of the High Temperature Oxidation of Binary Alloys

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

To predict concentration changes in binary alloy due to preferential oxidation during high temperature oxidation, a model based on the flux balance of the oxidized element at the moving oxide/alloy interface has been developed. These changes are driven by the alloy oxidation rate k c . The model is numerically solved considering different initial alloy concentration profiles and a possible diffusion enhancement effect close to the alloy surface. After validating the model by comparison with Wagner’s analytical solution for Ni30wt%–Pt alloy oxidised at 850 °C, we show that the effects of an initial alloy depletion due to the presence of a passive oxide layer are cancelled after very short oxidation times. We also show that a diffusion acceleration due to work-hardening in the vicinity of the alloy surface induces an inflexion point in the depletion profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Z. Suo, D. V. Kubair, A. G. Evans, D. R. Clarke, and V. K. Tolpygo, Acta Materialia 51, 959 (2003).

    Article  CAS  Google Scholar 

  2. B. M. Capell and G. S. Was, Metallurgical and Materials Transactions A 38A, 1244 (2007).

    Article  CAS  Google Scholar 

  3. C. Wagner, Journal of the Electrochemical Society 99, 369 (1952).

    Article  CAS  Google Scholar 

  4. C. S. Giggins and F. S. Pettit, Transactions of the Metallurgical Society of AIME 245, 2495 (1969).

    CAS  Google Scholar 

  5. B. D. Bastow, D. P. Whittle, and G. C. Wood, Oxidation of Metals 12, 413 (1978).

    Article  CAS  Google Scholar 

  6. W. M. Pragnell and H. E. Evans, Modelling and Simulation in Materials Science and Engineering 14, 733 (2006).

    Article  CAS  Google Scholar 

  7. A. Nicolas, V. Barnier, E. Aublant, and K. Wolski, Scripta Materialia 65, 803 (2011).

    Article  CAS  Google Scholar 

  8. N. B. Pilling and R. E. Bedworth, Journal of the Institute of Metals 29, 529 (1923).

    Google Scholar 

  9. L. G. Harrison, Transactions of the Faraday Society 57, 1191 (1961).

    Article  CAS  Google Scholar 

  10. R. W. Balluffi, Metallurgical Transactions A 13A, 2069 (1982).

    Article  Google Scholar 

  11. W. Arabczyk, M. Militzer, H.-J. Müssig, and J. Wieting, Surface Science 198, 167 (1988).

    Article  CAS  Google Scholar 

  12. L.-S. Chang, E. Rabkin, S. Hofmann, and W. Gust, Acta Metallurgica 47, 2951 (1999).

    CAS  Google Scholar 

  13. A. Nicolas, Etude de l'Evolution Physico-Chimique du Substrat lors de l'Oxydation à Haute Température des Alliages Modèle Ni-Cr à Faible Teneur en Chrome et de l'Alliage Modèle Ni-16Cr-9Fe (PhD Thesis, Ecole des Mines de Saint-Etienne, 2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Marrier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marrier, E., Ganster, P., Moulin, N. et al. Substrate Depletion Analysis and Modeling of the High Temperature Oxidation of Binary Alloys. Oxid Met 79, 81–91 (2013). https://doi.org/10.1007/s11085-012-9353-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-012-9353-z

Keywords

Navigation