Skip to main content
Log in

Well-Quasi-Order of Relabel Functions

  • Published:
Order Aims and scope Submit manuscript

Abstract

We define NLC\(_k^{\mathcal{F}}\) to be the restriction of the class of graphs NLC k , where relabelling functions are exclusively taken from a set \(\mathcal{F}\) of functions from {1,...,k} into {1,...,k}. We characterize the sets of functions \(\mathcal{F}\) for which NLC\(_k^{\mathcal{F}}\) is well-quasi-ordered by the induced subgraph relation ≤  i . Precisely, these sets \(\mathcal{F}\) are those which satisfy that for every \(f,g\in \mathcal{F}\), we have Im(f ∘ g) = Im(f) or Im(g ∘ f) = Im(g). To obtain this, we show that words (or trees) on \(\mathcal{F}\) are well-quasi-ordered by a relation slightly more constrained than the usual subword (or subtree) relation. A class of graphs is n-well-quasi-ordered if the collection of its vertex-labellings into n colors forms a well-quasi-order under ≤  i , where ≤  i respects labels. Pouzet (C R Acad Sci, Paris Sér A–B 274:1677–1680, 1972) conjectured that a 2-well-quasi-ordered class closed under induced subgraph is in fact n-well-quasi-ordered for every n. A possible approach would be to characterize the 2-well-quasi-ordered classes of graphs. In this respect, we conjecture that such a class is always included in some well-quasi-ordered NLC\(_k^{\mathcal{F}}\) for some family \(\mathcal{F}\). This would imply Pouzet’s conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting Hypergraph grammars. J. Comput. Syst. Sci. 46, 218–270 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Damaschke, P.: Induced subgraphs and well-quasi-ordering. J. Graph Theory 14, 427–435 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. Fraïssé, R.: Theory of relations. In: Studies in Logic, vol. 118. North Holland (1986)

  4. Gurski, F.: Characterizations for restricted graphs of NLC-width 2. Theor. Comput. Sci. 372, 108–114 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gurski, F., Wanke, E.: Minimizing NLC-width is NP-complete (extended abstract). In: Proceedings of Graph-Theoretical Concepts in Computer Science. Lecture Notes in Computer Science, vol. 3787, pp. 69–80. Springer, Berlin (2005)

    Chapter  Google Scholar 

  6. Higman, G.: Ordering by divisibility in abstract algebras. Proc. Lond. Math. Soc. 2, 326–336 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  7. Johansson, O.: NLC2-Decomposition in polynomial time. Int. J. Found. Comput. Sci. 11, 373–395 (2000)

    Article  MathSciNet  Google Scholar 

  8. Kaminski, M., Lozin, V.V., Milanic, M.: Recent developments on graphs of bounded clique-width. Discrete Appl. Math. 157(12), 2747–2761 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kriz, I.: Well-quasiordering finite trees with gap-condition. Proof of Harvey Friedman’s conjecture. Ann. Math. 130, 215–226 (1989)

    Article  MathSciNet  Google Scholar 

  10. Kriz, I., Sgall, J.:Well-quasi-ordering depends on the labels. Acta Sci. Math. 55, 59–65 (1991)

    MATH  MathSciNet  Google Scholar 

  11. Kriz, I., Thomas, R.: On well-quasi-ordering finite structures with labels. Graphs Comb. 6, 41–49 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kruskal, J.B.: Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture. Trans. Am. Math. Soc. 95, 210–225 (1960)

    MATH  MathSciNet  Google Scholar 

  13. Kruskal, J.B.: The theory of well-quasi-ordering, a frequently rediscovered concept. J. Comb. Theory, Ser. A 13, 297–305 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  14. Nash-Williams, C.St.J.A.: On well-quasi-ordering infinite trees. Math. Proc. Camb. Philos. Soc. 61, 697–720 (1965)

    Article  MATH  Google Scholar 

  15. Pouzet, M.: Un bel ordre d’abritement et ses rapports avec les bornes d’une multirelation. C. R. Acad. Sci., Paris Sér. A–B 274, 1677–1680 (1972)

    MATH  MathSciNet  Google Scholar 

  16. Robertson, N., Seymour, P.: Graph Minors. XX. Wagner’s conjecture. J. Comb. Theory, Ser. B 92, 325–357 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Thomassé, S.: On better-quasi-ordering countable series-parallel orders. Trans. Am. Math. Soc. 352, 2491–2505 (2000)

    Article  MATH  Google Scholar 

  18. Wanke, E.: k-NLC graphs and polynomial algorithms. Discrete Appl. Math. 54, 251–266 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Daligault.

Additional information

Research supported by the french ANR-project “Graph decompositions and algorithms (GRAAL)”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daligault, J., Rao, M. & Thomassé, S. Well-Quasi-Order of Relabel Functions. Order 27, 301–315 (2010). https://doi.org/10.1007/s11083-010-9174-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-010-9174-0

Keywords

Navigation