Skip to main content
Log in

Efficient side-coupling configuration for photonic crystal nanobeam cavities with micro-ring resonators

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper presents the design and optimization of a side-coupled photonic crystal nanobeam (1D PhC) cavity incorporating micro-ring resonators and a bus waveguide for efficient light coupling. The innovative design incorporates a parabolic taper function, ensuring gradual mode-gap modulation and robust light confinement. Through rigorous numerical simulations and optimization of key parameters—including the 1D PhC period, cavity center radius, taper delta radius, number of taper and mirror holes, waveguide width, ring radius, coupling gap distance, and material refractive index—we achieved a remarkable maximum Q factor of 2.5 × 105 at a wavelength of 1693.5 nm. This optimized configuration significantly enhances light-matter interaction, making it promising for applications demanding high-Q resonators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in the submitted manuscript.

Code availability

Not applicable.

References

  • Abbaslou, S., Gatdula, R., Lu, M., Stein, A., Soref, R.A., Jiang, W.: High-spectral-contrast symmetric modes in photonic crystal dual nanobeam resonators. IEEE Photonics Technol. Lett. 28, 2137–2140 (2016)

    ADS  CAS  Google Scholar 

  • Afzal, F.O., Halimi, S.I., Weiss, S.M.: Efficient side-coupling to photonic crystal nanobeam cavities via state-space overlap. JOSA B. 36, 585–595 (2019)

    ADS  CAS  Google Scholar 

  • Ahn, B.-H., Kang, J.-H., Kim, M.-K., Song, J.-H., Min, B., Kim, K.-S., Lee, Y.-H.: One-dimensional parabolic-beam photonic crystal laser. Opt. Express. 18, 5654–5660 (2010)

    ADS  CAS  PubMed  Google Scholar 

  • Ahn, G.H., Yang, K.Y., Trivedi, R., White, A.D., Su, L., Skarda, J., Vučković, J.: Photonic inverse design of on-chip microresonators. ACS Photonics. 9, 1875–1881 (2022)

    CAS  Google Scholar 

  • Aliee, M., Mozaffari, M.H., Saghaei, H.: Dispersion-flattened photonic quasicrystal optofluidic fiber for telecom C band operation. Photonics Nanostruct. 40, 100797 (2020). https://doi.org/10.1016/j.photonics.2020.100797

    Article  Google Scholar 

  • Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: Effect of scattering rods in the frequency response of photonic crystal demultiplexers. J. Optoelectron. Adv. Mater. 17, 259–263 (2015a)

    Google Scholar 

  • Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S., Hassangholizadeh-Kashtiban, M.: A 2* 4 all optical decoder switch based on photonic crystal ring resonators. J. Mod. Opt. 62, 430–434 (2015b)

    ADS  MathSciNet  Google Scholar 

  • Barnham, K.W.J., Ballard, I.M., Browne, B.C., Bushnell, D.B., Connolly, J.P., Ekins-Daukes, N.J., Fuhrer, M., Ginige, R., Hill, G., Ioannides, A., Johnson, D.C., Lynch, M.C., Mazzer, M., Roberts, J.S., Rohr, C., Tibbits, N.D.T.: Recent progress in quantum well solar cells. Nanatechnol. Photovoltaics. 511, 187–210 (2010). https://doi.org/10.1201/9781420076752

    Article  Google Scholar 

  • Buckley, S., Radulaski, M., Zhang, J.L., Petykiewicz, J., Biermann, K., Vučković, J.: Multimode Nanobeam cavities for nonlinear optics: High quality resonances separated by an octave. Opt. Express. 22, 26498–26509 (2014)

    ADS  PubMed  Google Scholar 

  • Dangi, M.M., Aghdam, A.M., Karimzadeh, R., Saghaei, H.: Design and simulation of high-quality factor all-optical demultiplexers based on a two-dimensional photonic crystal. Opt. Continuum. 1, 1458–1473 (2022)

    CAS  Google Scholar 

  • Deotare, P.B., McCutcheon, M.W., Frank, I.W., Khan, M., Lončar, M.: High quality factor photonic crystal nanobeam cavities. Appl. Phys. Lett. 94 (2009)

  • Ebnali-Heidari, M., Monat, C., Grillet, C., Moravvej-Farshi, M.K.: A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration. Opt. Express. 17, 18340–18353 (2009a)

    ADS  CAS  PubMed  Google Scholar 

  • Ebnali-Heidari, M., Grillet, C., Monat, C., Eggleton, B.J.: Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration. Opt. Express. 17, 1628–1635 (2009b)

    ADS  CAS  PubMed  Google Scholar 

  • Ebnali-Heidari, M., Saghaei, H., Monat, C., Grillet, C.: Four-wave mixing based mid-span phase conjugation using slow light engineered chalcogenide and silicon photonic crystal waveguides, in: 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011, (2011). https://doi.org/10.1109/CLEOE.2011.5942694

  • Ebnali-Heidari, M., Dehghan, F., Saghaei, H., Koohi-Kamali, F., Moravvej-Farshi, M.K.: Dispersion engineering of photonic crystal fibers by means of fluidic infiltration. J. Mod. Opt. 59, 1384–1390 (2012). https://doi.org/10.1080/09500340.2012.715690

    Article  ADS  CAS  Google Scholar 

  • Ebnali-Heidari, M., Saghaei, H., Koohi-Kamali, F., Naser Moghadasi, M.: Moravvej-Farshi, proposal for Supercontinuum Generation by Optofluidic Infiltrated Photonic Crystal fibers. IEEE J. Sel. Top. Quantum Electron. 20 (2014). https://doi.org/10.1109/JSTQE.2014.2307313

  • Ebnali-Heidari, M., Ebnali-Heidari, A., Emami, H.: Utilization of slow light enhancement of four-wave mixing within a silicon photonic crystal for microwave frequency measurement purposes. JOSA B. 38, C113–C119 (2021)

    Google Scholar 

  • Foresi, J.S., Villeneuve, P.R., Ferrera, J., Thoen, E.R., Steinmeyer, G., Fan, S., Joannopoulos, J.D., Kimerling, L.C., Smith, H.I., Ippen, E.P.: Photonic-bandgap microcavities in optical waveguides. Nature. 390, 143–145 (1997)

    ADS  CAS  Google Scholar 

  • Foroughifar, A., Saghaei, H., Veisi, E.: Design and analysis of a novel four-channel optical filter using ring resonators and line defects in photonic crystal microstructure. Opt. Quantum Electron. 53 (2021). https://doi.org/10.1007/s11082-021-02743-z

  • Goswami, K., Mondal, H., Sen, M.: Optimized design of multiple bends for maximum power transfer in optical waveguide. Optik (Stuttg). 265, 169448 (2022)

    ADS  CAS  Google Scholar 

  • Halimi, S.I., Hu, S., Afzal, F.O., Weiss, S.M.: Realizing high transmission intensity in photonic crystal nanobeams using a side-coupling waveguide. Opt. Lett. 43, 4260–4263 (2018)

    ADS  CAS  PubMed  Google Scholar 

  • Hao, G.-D., Wang, X.-L.: Enhancement of light extraction efficiency by evanescent wave coupling effect in ridge-shaped AlGaInP/GaInP quantum wells. Appl. Phys. Lett. 100 (2012)

  • Hosseinibalam, F., Hassanzadeh, S., Ebnali-Heidari, A., Karnutsch, C.: Design of an on-chip absorption spectrometer using optofluidic slotted photonic crystal structures. IEEE Photonics J. 4, 1484–1494 (2012)

    ADS  Google Scholar 

  • Hosseinzadeh Sani, M., Ghanbari, A., Saghaei, H.: An ultra-narrowband all-optical filter based on the resonant cavities in rod-based photonic crystal microstructure. Opt. Quantum Electron. 52, 295 (2020). https://doi.org/10.1007/s11082-020-02418-1

    Article  CAS  Google Scholar 

  • Hosseinzadeh Sani, M., Saghaei, H., Mehranpour, M.A., Asgariyan Tabrizi, A.: A novel all-optical sensor design based on a tunable resonant nanocavity in photonic crystal microstructure applicable in MEMS accelerometers. Photonic Sens. 11, 457–471 (2021). https://doi.org/10.1007/s13320-020-0607-0

    Article  ADS  CAS  Google Scholar 

  • Kassa-Baghdouche, L.: Optical properties of a point-defect nanocavity-based elliptical-hole photonic crystal for mid-infrared liquid sensing. Phys. Scr. 95, 015502 (2019)

    ADS  Google Scholar 

  • Kassa-Baghdouche, L.: High-sensitivity spectroscopic gas sensor using optimized H1 photonic crystal microcavities. JOSA B. 37, A277–A284 (2020)

    ADS  CAS  Google Scholar 

  • Kassa-Baghdouche, L., Cassan, E.: Mid-infrared refractive index sensing using optimized slotted photonic crystal waveguides. Photonics Nanostructures-Fundamentals Appl. 28, 32–36 (2018a)

    ADS  Google Scholar 

  • Kassa-Baghdouche, L., Cassan, E.: High efficiency slotted photonic crystal waveguides for the determination of gases using mid-infrared spectroscopy. Instrum. Sci. Technol. 46, 534–544 (2018b)

    CAS  Google Scholar 

  • Kassa-Baghdouche, L., Cassan, E.: Sensitivity analysis of ring-shaped slotted photonic crystal waveguides for mid-infrared refractive index sensing. Opt. Quantum Electron. 51, 1–11 (2019)

    CAS  Google Scholar 

  • Kassa-Baghdouche, L., Boumaza, T., Bouchemat, M.: Optical properties of point-defect nanocavity implemented in planar photonic crystal with various low refractive index cladding materials. Appl. Phys. B. 121, 297–305 (2015a)

    ADS  CAS  Google Scholar 

  • Kassa-Baghdouche, L., Boumaza, T., Bouchemat, M.: Optimization of Q-factor in nonlinear planar photonic crystal nanocavity incorporating hybrid silicon/polymer material. Phys. Scr. 90, 065504 (2015b)

    ADS  Google Scholar 

  • Kassa-Baghdouche, L., Boumaza, T., Cassan, E., Bouchemat, M.: Enhancement of Q-factor in SiN-based planar photonic crystal L3 nanocavity for integrated photonics in the visible-wavelength range. Optik (Stuttg). 126, 3467–3471 (2015c)

    ADS  CAS  Google Scholar 

  • Lalanne, P., Hugonin, J.P.: Bloch-wave engineering for high-Q, small-V microcavities. IEEE J. Quantum Electron. 39, 1430–1438 (2003)

    ADS  CAS  Google Scholar 

  • Lalanne, P., Sauvan, C., Hugonin, J.P.: Photon confinement in photonic crystal nanocavities. Laser Photon Rev. 2, 514–526 (2008)

    ADS  CAS  Google Scholar 

  • Liang, F., Clarke, N., Patel, P., Loncar, M., Quan, Q.: Scalable photonic crystal chips for high sensitivity protein detection. Opt. Express. 21, 32306–32312 (2013)

    ADS  CAS  PubMed  Google Scholar 

  • Little, B.E., Chu, S.T., Haus, H.A., Foresi, J., Laine, J.-P.: Microring resonator channel dropping filters. J. Lightwave Technol. 15, 998–1005 (1997)

    ADS  Google Scholar 

  • Liu, Y., Salemink, H.W.M.: Photonic crystal-based all-optical on-chip sensor. Opt. Express. 20, 19912–19920 (2012)

    ADS  CAS  PubMed  Google Scholar 

  • Lu, T.-W., Chiu, L.-H., Lin, P.-T., Lee, P.-T.: One-dimensional photonic crystal nanobeam lasers on a flexible substrate. Appl. Phys. Lett. 99 (2011)

  • Mancinelli, M., Guider, R., Bettotti, P., Masi, M., Vanacharla, M.R., Pavesi, L.: Coupled-resonator-induced-transparency concept for wavelength routing applications. Opt. Express. 19, 12227–12240 (2011)

    ADS  CAS  PubMed  Google Scholar 

  • Mandal, S., Erickson, D.: Nanoscale optofluidic sensor arrays. Opt. Express. 16, 1623–1631 (2008)

    ADS  PubMed  Google Scholar 

  • Mohebzadeh-Bahabady, A., Olyaee, S.: Designing low power and high contrast ratio all-optical NOT logic gate for using in optical integrated circuits. Opt. Quantum Electron. 51, 3 (2019)

    Google Scholar 

  • Monat, C., Ebnali-Heidari, M., Grillet, C., Corcoran, B., Eggleton, B.J., White, T.P., O’Faolain, L., Li, J., Krauss, T.F.: Four-wave mixing in slow light engineered silicon photonic crystal waveguides. Opt. Express. 18, 22915–22927 (2010)

    ADS  CAS  PubMed  Google Scholar 

  • Mondal, H., Goswami, K., Sen, M., Khan, W.R.: Design and analysis of all-optical logic NOR gate based on linear optics. Opt. Quantum Electron. 54, 1–14 (2022)

    Google Scholar 

  • Mørk, J., Kristensen, P.T., Kaer, P., Heuck, M., Yu, Y., Gregersen, N.: Cavity photonics, Photonics: Scientific Foundations, Technology and Applications. 2, 21–51 (2015).

  • Naghizade, S., Saghaei, H.: Tunable graphene-on-insulator band-stop filter at the mid-infrared region. Opt. Quantum Electron. 52, 224 (2020). https://doi.org/10.1007/s11082-020-02350-4

    Article  CAS  Google Scholar 

  • Naghizade, S., Saghaei, H.: Tunable electro-optic analog-to-digital converter using graphene nanoshells in photonic crystal ring resonators. J. Opt. Soc. Am. B. 38, 2127–2134 (2021a). https://doi.org/10.1364/JOSAB.423088

    Article  ADS  Google Scholar 

  • Naghizade, S., Saghaei, H.: An ultra-fast optical analog-to-digital converter using nonlinear X-shaped photonic crystal ring resonators. Opt. Quantum Electron. 53, 1–16 (2021b). https://doi.org/10.1007/s11082-021-02798-y

    Article  CAS  Google Scholar 

  • Naghizade, S., Saghaei, H.: A novel design of fast and compact all-optical full-adder using nonlinear resonant cavities. Opt. Quantum Electron. 53, 262 (2021d). https://doi.org/10.1007/s11082-021-02929-5

    Article  Google Scholar 

  • Naghizade, S., Saghaei, H.: Ultra-fast tunable optoelectronic full-adder based on photonic crystal ring resonators covered by graphene nanoshells. Phys. E Low Dimens Syst. Nanostruct. 142, 115293 (2022). https://doi.org/10.1016/j.physe.2022.115293

    Article  CAS  Google Scholar 

  • Naghizade, S., Didari-Bader, A., Saghaei, H.: Ultra-fast tunable optoelectronic 2-to-4 binary decoder using graphene-coated silica rods in photonic crystal ring resonators. Opt. Quantum Electron. 54, 767 (2022). https://doi.org/10.1007/s11082-022-04157-x

    Article  CAS  Google Scholar 

  • Naghizade, S., Didari-Bader, A., Saghaei, H., Etezad, M.: Ultra-fast all-optical 8-to-3 encoder utilizing photonic crystal fiber. AIP Adv. 13, 045303 (2023a). https://doi.org/10.1063/5.0142525

    Article  ADS  CAS  Google Scholar 

  • Naghizade, S., Didari-Bader, A., Saghaei, H., Etezad, M.: An electro-optic comparator based on photonic crystal ring resonators covered by graphene nanoshells. Optik (Stuttg). 283, 170898 (2023b)

    ADS  CAS  Google Scholar 

  • Nair, R.V., Vijaya, R.: Photonic crystal sensors: An overview. Prog Quantum Electron. 34, 89–134 (2010). https://doi.org/10.1016/j.pquantelec.2010.01.001

    Article  ADS  CAS  Google Scholar 

  • Nayyeri Raad, A., Saghaei, H., Mehrabani, Y.S.: An optical 2-to-4 decoder based on photonic crystal X-shaped resonators covered by graphene shells. Opt. Quantum Electron. 55, 452 (2023). https://doi.org/10.1007/s11082-023-04727-7

    Article  CAS  Google Scholar 

  • Nelson, J.: Quantum-well structures for photovoltaic energy conversion. Thin Films. 21, 311–368 (1995). https://doi.org/10.1016/S1079-4050(06)80007-4

    Article  CAS  Google Scholar 

  • Notomi, M., Kuramochi, E., Taniyama, H.: Ultrahigh-Q nanocavity with 1D photonic gap. Opt. Express. 16, 11095–11102 (2008)

    ADS  CAS  PubMed  Google Scholar 

  • O’brien, J.L., Furusawa, A., Vučković, J.: Photonic quantum technologies. Nat. Photonics. 3, 687–695 (2009)

    ADS  Google Scholar 

  • Parandin, F., Heidari, F., Rahimi, Z., Olyaee, S.: Two-dimensional photonic crystal biosensors: A review. Opt. Laser Technol. 144, 107397 (2021)

    CAS  Google Scholar 

  • Parandin, F., Olyaee, S., Kamarian, R., Jomour, M.: Design and simulation of linear all-optical comparator based on square-lattice photonic crystals, in: Photonics, MDPI, p. 459. (2022)

  • Passaro, V.M.N., Troia, B., La Notte, M., De Leonardis, F.: Photonic resonant microcavities for chemical and biochemical sensing. RSC Adv. 3, 25–44 (2013)

    ADS  CAS  Google Scholar 

  • Pernice, W.H.P., Xiong, C., Schuck, C., Tang, H.X.: High-Q aluminum nitride photonic crystal nanobeam cavities. Appl. Phys. Lett. 100 (2012)

  • Prakash, C., Sen, M., Mondal, H., Goswami, K.: Design and optimization of a TE-pass polarization filter based on a slotted photonic crystal waveguide. JOSA B. 35, 1791–1798 (2018)

    ADS  CAS  Google Scholar 

  • Purcell, E.M.: Spontaneous emission probabilities at radio frequencies. In: Confined Electrons and Photons: New Physics and Applications, p. 839. Springer (1995)

  • Raei, R., Ebnali-Heidari, M., Saghaei, H.: Supercontinuum generation in organic liquid–liquid core-cladding photonic crystal fiber in visible and near-infrared regions: Publisher’s note. J. Opt. Soc. Am. B. 35, 1545 (2018). https://doi.org/10.1364/josab.35.001545

    Article  ADS  Google Scholar 

  • Rajasekar, R., Parameshwari, K., Robinson, S.: Nano-optical switch based on photonic crystal ring resonator. Plasmonics. 14, 1687–1697 (2019)

    CAS  Google Scholar 

  • Rao, D.G.S., Palacharla, V., Swarnakar, S., Kumar, S.: Design of all-optical D flip-flop using photonic crystal waveguides for optical computing and networking. Appl. Opt. 59, 7139–7143 (2020)

    ADS  PubMed  Google Scholar 

  • Saghaei, H., Ebnali-Heidari, M., Moravvej-Farshi, M.K.: Midinfrared supercontinuum generation via As_2Se_3 chalcogenide photonic crystal fibers. Appl. Opt. 54, 2072 (2015). https://doi.org/10.1364/ao.54.002072

    Article  ADS  CAS  PubMed  Google Scholar 

  • Saghaei, H., Moravvej-Farshi, M.K., Ebnali-Heidari, M., Moghadasi, M.N.: Ultra-wide mid-infrared Supercontinuum Generation in As40Se60 chalcogenide fibers: Solid Core PCF Versus SIF. IEEE J. Sel. Top. Quantum Electron. 22 (2016). https://doi.org/10.1109/JSTQE.2015.2477048

  • Saghaei, H., Elyasi, P., Karimzadeh, R.: Design, fabrication, and characterization of Mach–Zehnder interferometers. Photonics Nanostruct. 37 (2019). https://doi.org/10.1016/j.photonics.2019.100733

  • saleh Naghizade, H., Saghaei: Ultra-fast tunable optoelectronic half adder/subtractor based on photonic crystal ring resonators covered by graphene nanoshells. Opt. Quantum Electron. 53, 380 (2021c). https://doi.org/10.1007/s11082-021-03071-y

    Article  CAS  Google Scholar 

  • Sani, M.H., Tabrizi, A.A., Saghaei, H., Karimzadeh, R.: An ultrafast all-optical half adder using nonlinear ring resonators in photonic crystal microstructure. Opt. Quantum Electron. 52 (2020). https://doi.org/10.1007/s11082-020-2233-x

  • Schneider, C., Heindel, T., Huggenberger, A., Niederstrasser, T.A., Reitzenstein, S., Forchel, A., Höfling, S., Kamp, M.: Microcavity enhanced single photon emission from an electrically driven site-controlled quantum dot. Appl. Phys. Lett. 100 (2012)

  • Schuh, K., Barthel, S., Marquardt, O., Hickel, T., Neugebauer, J., Czycholl, G., Jahnke, F.: Strong dipole coupling in nonpolar nitride quantum dots due to Coulomb effects. Appl. Phys. Lett. 100 (2012)

  • Seraj, Z., Soroosh, M., Alaei-Sheini, N.: Ultra-compact ultra-fast 1-bit comparator based on a two-dimensional nonlinear photonic crystal structure. Appl. Opt. 59, 811–816 (2020)

    ADS  CAS  PubMed  Google Scholar 

  • Serajmohammadi, S., Alipour-Banaei, H., Mehdizadeh, F.: Proposal for realizing an all-optical half adder based on photonic crystals. Appl. Opt. 57, 1617–1621 (2018)

    ADS  CAS  PubMed  Google Scholar 

  • Serna, S., Colman, P., Zhang, W., Le Roux, X., Caer, C., Vivien, L., Cassan, E.: Experimental GVD engineering in slow light slot photonic crystal waveguides. Sci. Rep. 6, 26956 (2016)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Sethi, P., Roy, S.: Ultrafast All-Optical Flip-Flops, simultaneous Comparator-Decoder and Reconfigurable Logic Unit with Silicon Microring Resonator switches. IEEE J. Sel. Top. Quantum Electron. 20, 118–125 (2014). https://doi.org/10.1109/JSTQE.2013.2295179

    Article  ADS  CAS  Google Scholar 

  • Suthar, B., Bhargava, A.: Pressure sensor based on quantum well-structured photonic crystal. Silicon. 13, 1765–1768 (2021)

    CAS  Google Scholar 

  • Tanabe, T., Notomi, M., Mitsugi, S., Shinya, A., Kuramochi, E.: All-optical switches on a silicon chip realized using photonic crystal nanocavities. Appl. Phys. Lett. 87, 1–3 (2005). https://doi.org/10.1063/1.2089185

    Article  CAS  Google Scholar 

  • Ueda, Y., Fujisawa, T., Kanazawa, S., Kobayashi, W., Takahata, K., Ishii, H.: Very-low-voltage operation of Mach-Zehnder interferometer-type electroabsorption modulator using asymmetric couplers. Opt. Express. 22, 14610 (2014). https://doi.org/10.1364/OE.22.014610

    Article  ADS  CAS  PubMed  Google Scholar 

  • Vahala, K.J.: Optical microcavities. Nature. 424, 839–846 (2003)

    ADS  CAS  PubMed  Google Scholar 

  • Vlasov, Y.A., McNab, S.J.: Coupling into the slow light mode in slab-type photonic crystal waveguides. Opt. Lett. 31, 50–52 (2006)

    ADS  PubMed  Google Scholar 

  • Wang, P., Madugani, R., Zhao, H., Yang, W., Ward, J.M., Yang, Y., Farrell, G., Brambilla, G., Chormaic, S.N.: Packaged optical add-drop filter based on an optical microfiber coupler and a microsphere. IEEE Photonics Technol. Lett. 28, 2277–2280 (2016)

    ADS  CAS  Google Scholar 

  • Xia, J., Chen, F., Li, J., Tao, N.: Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4, 505–509 (2009). https://doi.org/10.1038/nnano.2009.177

    Article  ADS  CAS  PubMed  Google Scholar 

  • Xie, W., Verheyen, P., Pantouvaki, M., Van Campenhout, J., Van Thourhout, D.: Efficient resonance management in ultrahigh-Q 1D photonic crystal nanocavities fabricated on 300 mm SOI CMOS platform. Laser Photon Rev. 15, 2000317 (2021)

    ADS  CAS  Google Scholar 

  • Xu, Y., Li, Y., Lee, R.K., Yariv, A.: Scattering-theory analysis of waveguide-resonator coupling. Phys. Rev. E. 62, 7389 (2000)

    ADS  CAS  Google Scholar 

  • Yariv, A., Xu, Y., Lee, R.K., Scherer, A.: Coupled-resonator optical waveguide:? A proposal and analysis. Opt. Lett. 24, 711–713 (1999)

    ADS  CAS  PubMed  Google Scholar 

  • Zamanian-Dehkordi, S.S., Soroosh, M., Akbarizadeh, G.: An ultra-fast all-optical RS flip-flop based on nonlinear photonic crystal structures. Opt. Rev. 25, 523–531 (2018)

    CAS  Google Scholar 

  • Zhang, Y., Zhao, Y., Wang, Q.: Measurement of methane concentration with cryptophane E infiltrated photonic crystal microcavity. Sens. Actuators B Chem. 209, 431–437 (2015)

    CAS  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Author Agreement Statement We the undersigned declare that this manuscript is original, has not been published before and is not currently being considered for publication elsewhere. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us. We understand that the Corresponding Author is the sole contact for the Editorial process. He is responsible for communicating with the other authors about progress, submissions of revisions and final approval of proofs. Seyed Mohammad ZareMohammad Reza ShayestehMajid Ebnali-HeidariAliakbar Ebnali-HeidariMaryam Nayeri.

Corresponding author

Correspondence to Mohammad Reza Shayesteh.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, S.M., Ebnali-Heidari, M., Shayesteh, M.R. et al. Efficient side-coupling configuration for photonic crystal nanobeam cavities with micro-ring resonators. Opt Quant Electron 56, 692 (2024). https://doi.org/10.1007/s11082-024-06478-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06478-5

Keywords

Navigation