Skip to main content
Log in

High photocatalytic WO3 nanoparticles synthesized using Sol-gel method at different stirring times

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Cancer and water scarcity are two important global problems, which can be solved using the interaction of light with WO3 nanoparticles. The stirring time in the sol-gel method is an important synthesis parameter that plays a decisive role in the formation of nanoparticles and their properties. Therefore, the effects of stirring time are investigated on the structural, morphological, optical properties, hydrodynamic diameter, colloidal stability, and photocatalytic activities of WO3 nanoparticles under diode laser irradiation. Also, the XRD results declare that the stirring times of 3, 7, and 11 h lead to creating a single phase of orthorhombic but, hexagonal phase with the phase percentage of 8% appears in the sample with increasing the stirring time to 15 h. Furthermore, stirring time affects the average crystallite and particle sizes of the synthesized nanoparticles, and an increasing trend in these average sizes is observed with increasing the stirring time. indeed, the results confirm the formation of uniform tungsten oxide dihydrate nanoparticles at different stirring times. The synthesized WO3 sample at a stirring time of 7 h has good colloidal stability (zeta potentials of −30.02 mV). Finally, the photocatalytic activities of WO3 nanoparticles are evaluated using the degradation of methylene blue under laser irradiation in neutral and acidic conditions. The results demonstrate that stirring time significantly affects the ROS production of the synthesized nanoparticles. The stirring times of 7 h/3 hours has the highest photocatalytic efficiency of 91.7%/80.3% in the neutral/ acidic medium in exposing time of 160 min.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

There is no additional data.

References

  • Abbaspoor, M., Aliannezhadi, M., Tehrani, F.S.: Effect of solution pH on as-synthesized and calcined WO3 nanoparticles synthesized using sol-gel method. Opt. Mater. 121, 111552 (2021)

    Google Scholar 

  • Abbaspoor, M., Aliannezhadi, M., Tehrani, F.S.: High-performance photocatalytic WO3 nanoparticles for treatment of acidic wastewater. J. Sol-Gel Sci. Technol. (2022). https://doi.org/10.1007/s10971-022-06002-9

    Article  Google Scholar 

  • Afify, H., Hassan, S., Obaida, M., Moussa, I., Abouelsayed, A.: Preparation, characterization, and optical spectroscopic studies of nanocrystalline tungsten oxide WO3. Opt. Laser Technol. 111, 604–611 (2019)

    ADS  Google Scholar 

  • Ahmed, B., Kumar, S., Ojha, A.K., Donfack, P., Materny, A.: Facile and controlled synthesis of aligned WO3 nanorods and nanosheets as an efficient photocatalyst material. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 175, 250–261 (2017)

    ADS  Google Scholar 

  • Aldeen, T.S., Mohamed, H.E.A., Maaza, M.: ZnO nanoparticles prepared via a green synthesis approach: physical properties, photocatalytic and antibacterial activity. J. Phys. Chem. Solids 160, 110313 (2022)

    Google Scholar 

  • Aliannezhadi, M., Minbashi, M., Tuchin, V.V.: Effect of laser intensity and exposure time on photothermal therapy with nanoparticles heated by a 793-nm diode laser and tissue optical clearing. Quantum Electron 48(6), 559 (2018)

    ADS  Google Scholar 

  • Bahadori, A., Dizaji, H.R., Memarian, N., Aliannezhadi, M.: Effect of preparation conditions on physical properties of manganese oxide thin films. J. Solgel Sci. Technol. 95(1), 180–189 (2020)

    Google Scholar 

  • Bilal Tahir, M., Nabi, G., Rafique, M., Khalid, N.: Role of fullerene to improve the WO3 performance for photocatalytic applications and hydrogen evolution. Int. J. Energy Res. 42(15), 4783–4789 (2018)

    Google Scholar 

  • Can, F., Courtois, X., Duprez, D.: Tungsten-based catalysts for environmental applications. Catalysts 11(6), 703 (2021)

    Google Scholar 

  • Chai, Y., Ha, F., Yam, F., Hassan, Z.: Fabrication of tungsten oxide nanostructure by sol-gel method. Procedia Chem. 19, 113–118 (2016)

    Google Scholar 

  • David, L., et al.: Green synthesis, characterization and anti-inflammatory activity of silver nanoparticles using european black elderberry fruits extract. Colloids Surf. B 122, 767–777 (2014)

    Google Scholar 

  • Gao, X., et al.: Hydrothermal synthesis of WO3 nanoplates as highly sensitive cyclohexene sensor and high-efficiency MB photocatalyst. Sens. Actuators B 181, 537–543 (2013)

    Google Scholar 

  • Garcia-Sanchez, R.F., Ahmido, T., Casimir, D., Baliga, S., Misra, P.: Thermal effects associated with the Raman spectroscopy of WO3 gas-sensor materials. J. Phys. Chem. A 117(50), 13825–13831 (2013)

    Google Scholar 

  • Ghasemi, L., Jafari, H., Jafari, A.: Optimizing experimental conditions in synthesizing WO3 nanopowders through sol-gel method using Taguchi design. J. Aust. Ceram. Soc. 54(3), 483–492 (2018)

    Google Scholar 

  • Gholizadeh, Z., Ghominejad, M., Tehrani, F.S.: High specific surface area γ-Al2O3 nanoparticles synthesized by facile and low-cost Co-precipitation Method. preprint, 1-17 (2022). https://doi.org/10.21203/rs.3.rs-2085977/v1

  • Gupta, S.P., Nishad, H.H., Chakane, S.D., Gosavi, S.W., Late, D.J., Walke, P.S.: Phase transformation in tungsten oxide nanoplates as a function of post-annealing temperature and its electrochemical influence on energy storage. Nanoscale Adv. 2(10), 4689–4701 (2020)

    ADS  Google Scholar 

  • Huang, Z.F., Song, J., Pan, L., Zhang, X., Wang, L., Zou, J.J.: Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv. Mater. 27(36), 5309–5327 (2015)

    Google Scholar 

  • Jeevitha, G., Abhinayaa, R., Mangalaraj, D., Ponpandian, N.: Tungsten oxide-graphene oxide (WO3-GO) nanocomposite as an efficient photocatalyst, antibacterial and anticancer agent. J. Phys. Chem. Solids 116, 137–147 (2018)

    ADS  Google Scholar 

  • Jiang, J., Zhou, H., Zhang, F., Fan, T., Zhang, D.: Hydrothermal synthesis of core–shell TiO2 to enhance the photocatalytic hydrogen evolution. Appl. Surf. Sci. 368, 309–315 (2016)

    ADS  Google Scholar 

  • Kanan, S.M., Tripp, C.P.: Synthesis, FTIR studies and sensor properties of WO3 powders. Curr. Opin. Solid State Mater. Sci 11, 1–2 (2007)

    ADS  Google Scholar 

  • Kang, M., Liang, J., Wang, F., Chen, X., Lu, Y., Zhang, J.: Structural design of hexagonal/monoclinic WO3 phase junction for photocatalytic degradation. Mater. Res. Bull. 121, 110614 (2020)

    Google Scholar 

  • Kozlovskiy, A.L., Alina, A., Zdorovets, M.V.: Study of the effect of ion irradiation on increasing the photocatalytic activity of WO3 microparticles. J. Mater. Sci. Mater. Electron 32(3), 3863–3877 (2021)

    Google Scholar 

  • Li, J., Zhang, J.Z.: Optical properties and applications of hybrid semiconductor nanomaterials. Coord. Chem. Rev. 253, 23–24 (2009)

    Google Scholar 

  • Lin, Y., Hong, R., Chen, H., Zhang, D., Xu, J.: Green synthesis of ZnO-GO composites for the photocatalytic degradation of methylene blue. J. Nanomater. (2020). https://doi.org/10.1155/2020/4147357

    Article  Google Scholar 

  • Liu, R., Zhang, W., Chen, Y., Wang, Y.: Uranium (VI) adsorption by copper and copper/iron bimetallic central MOFs. Colloids Surf. A 587, 124334 (2020)

    Google Scholar 

  • Lu, Y., Zhang, J., Wang, F., Chen, X., Feng, Z., Li, C.: K2SO4-assisted hexagonal/monoclinic WO3 phase junction for efficient photocatalytic degradation of RhB. ACS Appl. Energy Mater. 1(5), 2067–2077 (2018)

    Google Scholar 

  • Makuła, P., Pacia, M., Macyk, W.: How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J. Phys. Chem. Lett. 9(23), 6814–6817 (2018)

    Google Scholar 

  • Martínez, D.S., Martínez-De La, A., Cruz, Cuéllar, E.L.: Photocatalytic properties of WO3 nanoparticles obtained by precipitation in presence of urea as complexing agent. Appl. Catal. A 398, 1–2 (2011)

    Google Scholar 

  • Matalkeh, M., et al.: Visible light photocatalytic activity of Ag/WO3 nanoparticles and its antibacterial activity under ambient light and in the dark. Res. Eng. 13, 100313 (2022)

    Google Scholar 

  • Mehmood, F., Iqbal, J., Ismail, M., Mehmood, A.: Ni doped WO3 nanoplates: an excellent photocatalyst and novel nanomaterial for enhanced anticancer activities. J. Alloys Compd. 746, 729–738 (2018)

    Google Scholar 

  • Mirjalili, F., Hasmaliza, M., Abdullah, L.C.: Size-controlled synthesis of nano α-alumina particles through the sol-gel method. Ceram. Int. 36(4), 1253–1257 (2010)

    Google Scholar 

  • Moghazy, M.: Effect of stirring time on ZnO nanoparticles properties and morphology. In: IOP Conference Series: Materials Science and Engineering, vol. 1046, no. 1: IOP Publishing, p. 012012. (2021)

  • Mohammed Harshulkhan, S., Janaki, K., Velraj, G., Sakthi Ganapathy, R., Krishnaraj, S.: Structural and optical properties of Ag doped tungsten oxide (WO3) by microwave-assisted chemical route. J. Mater. Sci. Mater. Electron 27(4), 3158–3163 (2016)

    Google Scholar 

  • Murillo-Sierra, J., Hernández-Ramírez, A., Hinojosa-Reyes, L., Guzmán-Mar, J.: A review on the development of visible light-responsive WO3-based photocatalysts for environmental applications. Chem. Eng. J. Adv. 5, 100070 (2021)

    Google Scholar 

  • Pang, X., Skillen, N., Gunaratne, N., Rooney, D.W., Robertson, P.K.: Removal of phthalates from aqueous solution by semiconductor photocatalysis: a review. J. Hazard. Mater. 402, 123461 (2021)

    Google Scholar 

  • Parthibavarman, M., Karthik, M., Prabhakaran, S.: Facile and one step synthesis of WO3 nanorods and nanosheets as an efficient photocatalyst and humidity sensing material. Vacuum 155, 224–232 (2018)

    ADS  Google Scholar 

  • Pradeeswari, K., Venkatesan, A., Pandi, P., Karthik, K., Krishna, K.H., Kumar, R.M.: Study on the electrochemical performance of ZnO nanoparticles synthesized via non-aqueous sol-gel route for supercapacitor applications. Mater. Res. Express 6(10), 105525 (2019)

    ADS  Google Scholar 

  • Rathnasamy, R., Alagan, V.: A facile synthesis and characterization of α-MoO3 nanoneedles and nanoplates for visible-light photocatalytic application. Phys. E Low Dimens. Syst. Nanostruct. 102, 146–152 (2018)

    ADS  Google Scholar 

  • Razali, N.A.M., Salleh, W.N.W., Aziz, F., Jye, L.W., Yusof, N., Ismail, A.F.: Review on tungsten trioxide as a photocatalysts for degradation of recalcitrant pollutants. J. Clean. Prod. 309, 127438 (2021)

    Google Scholar 

  • Rueda-Marquez, J.J., Levchuk, I., Ibañez, P.F., Sillanpää, M.: A critical review on application of photocatalysis for toxicity reduction of real wastewaters. J. Clean. Prod. 258, 120694 (2020)

    Google Scholar 

  • Shabaani, M., Rahaiee, S., Zare, M., Jafari, S.M.: Green synthesis of ZnO nanoparticles using loquat seed extract; Biological functions and photocatalytic degradation properties. Lwt 134,(2020)

  • Shang, Y., Cheng, X., Shi, R., Ma, Q., Wang, Y., Yang, P.: Synthesis and comparative investigation of adsorption capability and photocatalytic activities of WO3 and W18O49. Mater. Sci. Eng. B 262, 114724 (2020)

    Google Scholar 

  • Shang, J., Xiao, Z., Yu, L., Aprea, P., Hao, S.: An insight on the role of PVP in the synthesis of monoclinic WO3 with efficiently photocatalytic activity. Nanotechnology 31(12),(2020)

  • Shariatmadar Tehrani, F., Ahmadian, H., Aliannezhadi, M.: High specific surface area micro-mesoporous WO3 nanostructures synthesized with facile hydrothermal method. Eur. Phys. J. Plus 136(1), 1–11 (2021)

    Google Scholar 

  • Sheikhi, S., Aliannezhadi, M., Tehrani, F.S.: Effect of precursor material, pH, and aging on ZnO nanoparticles synthesized by one-step sol-gel method for photodynamic and photocatalytic applications. Eur. Phys. J. Plus 137(1), 60 (2022)

    Google Scholar 

  • Sheikhi, S., Aliannezhadi, M., Tehrani, F.S.: The effect of PEGylation on optical and structural properties of ZnO nanostructures for photocatalyst and photodynamic applications. Mater. Today Commun. (2022). https://doi.org/10.1016/j.mtcomm.2022.105103

    Article  Google Scholar 

  • Subramani, T., et al.: Surfactants assisted synthesis of WO3 nanoparticles with improved photocatalytic and antibacterial activity: a strong impact of morphology. Inorg. Chem. Commun. 142, 109709 (2022)

    Google Scholar 

  • Szilágyi, I.M., et al.: WO3 photocatalysts: influence of structure and composition. J. Catal. 294, 119–127 (2012)

    Google Scholar 

  • Sáenz-Hernández, R.J., Herrera-Pérez, G.M., Uribe-Chavira, J.S., Grijalva-Castillo, M.C., Elizalde-Galindo, J.T., Matutes-Aquino, J.A.: Correlation between thickness and optical properties in nanocrystalline γ-Monoclinic WO3 thin films. Coatings 12(11), 1727 (2022)

    Google Scholar 

  • Tehrani, F.S., Ahmadian, H., Aliannezhadi, M.: Hydrothermal synthesis and characterization of WO3 nanostructures: effect of reaction time. Mater. Res. Express 7(1), 015911 (2020)

    ADS  Google Scholar 

  • Thangavel, P., Karuppanan, S., Muthusamy Poomalai, P., Sakthivel, A., Nandagopalan, G., Bellucci, S.: Effect of chelating agents on the Structural, Optical, and Dye-Degradation Properties of Tungsten Oxide Nanoparticles. In: Photonics, vol. 9, p. 849. MDPI (2022)

  • Vamvasakis, I., Georgaki, I., Vernardou, D., Kenanakis, G., Katsarakis, N.: Synthesis of WO3 catalytic powders: evaluation of photocatalytic activity under NUV/visible light irradiation and alkaline reaction pH. J. Solgel Sci. Technol. 76(1), 120–128 (2015)

    Google Scholar 

  • Wang, Z., Nayak, P.K., Caraveo-Frescas, J.A., Alshareef, H.N.: Recent developments in p‐Type oxide semiconductor materials and devices. Adv. Mater. 28(20), 3831–3892 (2016)

    Google Scholar 

  • Wei, S., et al.: A novel green synthesis of silver nanoparticles by the residues of chinese herbal medicine and their biological activities. RSC Adv. 11(3), 1411–1419 (2021)

    ADS  Google Scholar 

  • Wu, Y., Zhang, Y., Huang, X., Guo, J.: Preparation of platelike nano alpha alumina particles. Ceram. Int. 27(3), 265–268 (2001)

    Google Scholar 

  • Zhang, N., et al.: Monoclinic tungsten oxide with {100} facet orientation and tuned electronic band structure for enhanced photocatalytic oxidations. ACS Appl. Mater. Interfaces 8(16), 10367–10374 (2016)

    Google Scholar 

  • Zhang, J., Fu, X., Hao, H., Gan, W.: Facile synthesis 3D flower-like Ag@ WO3 nanostructures and applications in solar-light photocatalysis. J. Alloys Compd. 757, 134–141 (2018)

    Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, MA and FT; methodology, MA, FT, and MA; software, MJ, and MA; validation, MA, FT; formal analysis, MA; investigation, MA; FT, MA, and MJ; data curation, MA, and MJ; writing, MJ, and MA; writing review and editing, MA, and FT; supervision, MA, and FT; project administration, MA.

Corresponding author

Correspondence to Maryam Aliannezhadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliannezhadi, M., Abbaspoor, M., Shariatmadar Tehrani, F. et al. High photocatalytic WO3 nanoparticles synthesized using Sol-gel method at different stirring times. Opt Quant Electron 55, 250 (2023). https://doi.org/10.1007/s11082-022-04540-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04540-8

Keywords

Navigation