Skip to main content
Log in

Optimization of nonlinear optical tweezers suitable to stretch DNA molecules without broken state

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The positioning of the trapped bead and DNA’s stretching dynamics in the nonlinear optical tweezers are numerically simulated by finite difference method using general Langevin. From the performance of longitudinal position-pulling time curves of bead and evolution of forces controlled by average laser power, the trapping time, possible maximum stretched length, and laser intensity threshold of to broken DNA molecule are found. We also discussed the suitable conditions to avoid broken and overstretched states for longitudinally optical stretched DNA molecule. Finally, the optimized configuration of NOT for DNA molecules having different contour lengths is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bakshi, S., Siryaporn, A., Goulian, M., Weisshaar, J.C.: Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Molecular Microbiology 85, 21–38 (2012)

    Article  Google Scholar 

  • Baumann, C.G., Bloomfield, V.A., Smith, S.B., Bustamante, C., Wang, M.D., Block, S.M.: Stretching of single collapsed DNA molecules. Biophys. J. 78, 1965–1978 (2000)

    Article  Google Scholar 

  • Bongini, L., Lombardi, V., Bianco, P.: The transition mechanism of DNA overstretching: a microscopic view using molecular dynamics. J. R. Soc Interface 11, 20140399 (2017)

    Article  Google Scholar 

  • Doan Quoc, T., Ho Quang, Q., Nguyen Thu, C., Do Thanh, V., Thai Doan, T., Nguyen Mạnh, T.: The suitable configuration of nonlinear tweezers for stretching of DNA molecules. Adv. Opt. Photon. Spectrosc. Appl. X, 37–43 (2018)

    Google Scholar 

  • Fu, W.B., Wang, X.L., Zhang, X.H., Ran, S.Y., Yan, J., Li, M.: Compaction dynamics of single DNA molecules under tension. J. Am. Chem. Soc. 128, 15040–15041 (2006)

    Article  Google Scholar 

  • Fu, H., Chen, H., Marko, J.F., Yan, J.: Two distinct overstretched DNA states. Nucleic Acids Res. 38, 5594–5600 (2010)

    Article  Google Scholar 

  • Ho Quang, Q., Van Mai, L., Hoang Dinh, H., Zhuang, D.: The simulation of the stabilizing process of dielectric nanoparticle in optical trap using counter-propagating pulsed laser beams. Chin. Opt. Lett. 8(3), 332–334 (2010)

    Article  ADS  Google Scholar 

  • Ho Quang, Q., Thai Doan, T., Doan Quoc, T., Nguyen Manh, T.: Nonlinear optical tweezers for longitudinal control of dielectric particles. Opt. Commun. 421, 94–98 (2018a)

    Article  ADS  Google Scholar 

  • Ho Quang, Q., Thai Doan, T., Doan Quoc, T., Nguyen Manh, T.: Enhance of optical trapping efficiency by nonlinear optical tweezers. Opt. Commun. 427, 341–347 (2018b)

    Article  ADS  Google Scholar 

  • Jeyaram, S., Geethakrishnan, T.: Third-order nonlinear optical properties of acid green 25 dye by Z-scan method. Opt. Laser Technol. 89, 2570–2574 (2017)

    Article  Google Scholar 

  • Li, T.C., Kheifets, S., Medellin, D., Raizen, M.G.: Measurement of the instantaneous velocity of a brownian particle. Science 328, 1673–1675 (2010)

    Article  ADS  Google Scholar 

  • Marantan, A., Mahadevan, L.: Mechanics and statistics of the worm-like chain. Am. J. Phys. 86(2), 86–94 (2018). https://doi.org/10.1119/1.5003376

    Article  ADS  Google Scholar 

  • Marko, J.F., Siggia, E.D.: Stretching DNA. Macromolecules 28, 8759–8770 (1995)

    Article  ADS  Google Scholar 

  • Min, D., Arbing, M.A., Jefferson, R.E., Bowie, J.U.: A simple DNA handle attachment method for single molecule mechanical manipulation experiments. Protein Sci. 25, 1535–1544 (2016)

    Article  Google Scholar 

  • Nguyen Manh, T., Ho Quang, Q., Thai Doan, T., Doan Quoc, T., Do Thanh, V., Doan Quoc, K.: 3D control stretched length of lambda-phage WLC DNA molecule by nonlinear optical tweezers. Opt. Quantum Electron. 52, 51 (2020). https://doi.org/10.1007/s11082-019-2164-6

    Article  Google Scholar 

  • Nguyen Van, T., Ho Quang, Q., Van Chu, L.: Ultrasonic-controlled microlens arrays in germanium for optical tweezers to sieve the micro-particles. Commun. Phys. 25, 157–163 (2015)

    Article  Google Scholar 

  • Øksendal, B.: Stochastic Differential Equations, 6th edn. Springer, Heidelberg (2003)

    Book  Google Scholar 

  • Shabestari, M.H., Meijring, A.E.C., Roos, W.H., Wuite, G.J.L., Peterman, E.J.G.: Recent advance in biological single-molecule applications of optical tweezers and fluorescence microscopy. Methods Enzymol. 582, 85–115 (2017)

    Article  Google Scholar 

  • Smith, S.B., Cui, Y., Bustamante, C.: Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271(5250), 795–799 (1996)

    Article  ADS  Google Scholar 

  • Strick, T., Allemand, J.F., Croquette, V., Bensimon, D.: Twisting and stretching single DNA molecules. Prog. Biophys. Mol. Biol. 74, 115–140 (2000)

    Article  Google Scholar 

  • Tanaka, Y., Kawada, H., Tsutsui, S., Ishikawa, M., Kitajima, H.: Dynamic micro-bead arrays using optical tweezers combined with intelligent control techniques. Opt. Express 17, 24102–24111 (2009)

    Article  ADS  Google Scholar 

  • Thai Dinh, T., Chu Van, L., Ho Quang, Q.: Recorrection stretch function of the worm-like chain elastic DNA molecules. Int. J. Eng. Innov. Technol. 3(9), 1–4 (2014)

    Google Scholar 

  • Thai Dinh, T., Doan Quoc, K., Bui Xuan, K., Ho Quang, Q.: 3D controlling the bead linking to DNA molecule in a single-beam nonlinear optical tweezers. Opt. Quantum Electron. 48, 561 (2016a)

    Article  Google Scholar 

  • Thai Dinh, T., Bui Xuan, K., Nguyen Thanh, T., Ho Quang, Q.: Dynamics of polystyrene beads linking to DNA molecules under single optical tweezers: a numerical study using full normalized Langevin equation. J. Nonlinear Opt. Phys. Mater. 25(4), 1650054 (2016b)

    Article  Google Scholar 

  • Thai Doan, T., Doan Quoc, K., Ho Quang, Q.: Acousto-optical tweezers for stretch of DNA molecule. Opt. Quantum Electron. 50, 51 (2018)

    Article  Google Scholar 

  • Volpe, G., Volpe, G.: Simulation of Brownian particle in an optical trap. Am. J. Phys. 81, 224–230 (2013)

    Article  ADS  Google Scholar 

  • Wang, M.D., Yin, H., Landick, R., Gelles, J., Block, S.M.: Stretching DNA with optical tweezers. Biophys. J. 72, 1335–1346 (1997)

    Article  ADS  Google Scholar 

  • Xincheng, Y., Zhaolin, L., Bingying, C., Xuehai, H., Daozhong, Z.: Measurements of displacement and trapping force on micro-sized particles in optical tweezer system. Sci. China 45, 919–925 (2013)

    Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 103.03-2018.342.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thang Nguyen Manh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho Quang, Q., Thai Doan, T., Doan Quoc, T. et al. Optimization of nonlinear optical tweezers suitable to stretch DNA molecules without broken state. Opt Quant Electron 52, 189 (2020). https://doi.org/10.1007/s11082-020-02307-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02307-7

Keywords

Navigation