Skip to main content
Log in

A coherent diffraction imaging by using an iterative phase retrieval with multiple patterns at several directions

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In coherent diffraction imaging systems, mulplex measurement on unknown object can enhance the quality of output image. We apply angular mulplexing scheme to capture several diffracting images. A tilt diffraction model is used for addressing the illumination beam in the imaging process. And an iterative phase retrieval algorithm is desingend and adopted to recover the image of sample. Numerical simulation results are provied to test the imaging method. This approach can be used to enhance the quality of reconstructed images in coherent diffraction imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Badraoui, N., Berceli, T.: Enhancing capacity of optical links using polarization multiplexing. Opt. Quant. Electron. 51(9), 310 (2019)

    Article  Google Scholar 

  • Boufalah, F., Dalil-Essakali, L., Belafhal, A.: Transformation of a generalized Bessel–Laguerre–Gaussian beam by a paraxial ABCD optical system. Opt. Quant. Electron. 51(8), 274 (2019)

    Article  Google Scholar 

  • Fang, J., Savransky, D.: Wavefront reconstruction with defocus and transverse shift estimation using Kalman filtering. Opt. Lasers Eng. 111, 122–129 (2018)

    Article  Google Scholar 

  • Fienup, J.R.: Phase retrieval algorithms: a comparison. Appl. Opt. 21(15), 2758–2769 (1982)

    Article  ADS  Google Scholar 

  • Hirose, M., Shimomura, K., Suzuki, A., Burdet, N., Takahashi, Y.: Multiple defocused coherent diffraction imaging: Method for simultaneously reconstructing objects and probe using X-ray free-electron lasers. Opt. Express 24(11), 11917–11925 (2016)

    Article  ADS  Google Scholar 

  • Hu, Z., Su, X., Li, X., Zhang, L., Chen, F.: A method for the characterization of intra-pixel response of infrared sensor. Opt. Quant. Electron. 51(3), 74 (2019)

    Article  Google Scholar 

  • Khakurel, K.P., Kimura, T., Joti, Y., Matsuyama, S., Yamauchi, K., Nishino, Y.: Coherent diffraction imaging of non-isolated object with apodized illumination. Opt. Express 23(22), 28182–28190 (2015)

    Article  ADS  Google Scholar 

  • Latychevskaia, T., Longchamp, J.-N., Fink, H.-W.: Novel Fourier-domain constraint for fast phase retrieval in coherent diffraction imaging. Opt. Express 19(20), 19330–19339 (2010)

    Article  ADS  Google Scholar 

  • Latychevskaia, T., Chushkin, Y., Fink, H.W.: Resolution enhancement by extrapolation of coherent diffraction images: a quantitative study on the limits and a numerical study of nonbinary and phase objects. J. Microsc. 264(1), 3–13 (2016)

    Article  Google Scholar 

  • Le, V.: High resolution for confocal fluorescence microscopy via extending zero-region of super-oscillation. Opt. Quant. Electron. 51(5), 136 (2019)

    Article  Google Scholar 

  • Li, P., Batey, D.J., Edo, T.B., Rodenburg, J.M.: Separation of three-dimensional scattering effects in tilt-series Fourier ptychography. Ultramicroscopy 158, 1–7 (2015)

    Article  Google Scholar 

  • Liu, Z., Dai, J., Sun, X., Liu, S.: Generation of hollow Gaussian beam by phase-only filtering. Opt. Express 16(24), 19926–19933 (2008)

    Article  ADS  Google Scholar 

  • Liu, H., Xu, Z., Zhang, X., Wu, Y., Guo, Z., Tai, R.: Effects of missing low-frequency information on ptychographic and plane-wave coherent diffraction imaging. Appl. Opt. 52(11), 2416–2427 (2013)

    Article  ADS  Google Scholar 

  • Liu, Z., Tan, J., Liu, W., Wu, J., Wu, Q., Liu, S.: A diffraction model of direction multiplexing method for hiding multiple images. J. Mod. Opt. 61(14), 1127–1132 (2014)

    Article  ADS  Google Scholar 

  • Liu, Z., Guo, C., Tan, J., Wu, Q., Pan, L., Liu, S.: Iterative phase-amplitude retrieval with multiple intensity images at output plane of gyrator transforms. J. Opt. 17(2), 025701 (2015)

    Article  ADS  Google Scholar 

  • Liu, Z., Chen, H., Blondel, W., Tan,J., Song, Z., Hu, Z., Tan, C., Liu, S. Generation of hollow beams by using phase filtering with multi-distance phase retrieval. Opt. Commun. 456, 124611 (2020)

    Article  Google Scholar 

  • Luo, W., Greenbaum, A., Zhang, Y., Ozcan, A.: Synthetic aperture-based on-chip microscopy. Light Sci Appl 4, e261 (2015)

    Article  ADS  Google Scholar 

  • Marathe, S., Kim, S.S., Kim, S.N., Chan Kim, H.C., Kang, P.V., Nickles Noh, D.Y.: Coherent diffraction surface imaging in reflection geometry. Opt. Express 18(7), 7253–7262 (2010)

    Article  ADS  Google Scholar 

  • Pan, X., Liu, C., Zhu, J.: Coherent amplitude modulation imaging based on partially saturated diffraction pattern. Opt. Express 26(17), 21929–21938 (2018)

    Article  ADS  Google Scholar 

  • Pedrini, G., Osten, W., Zhang, Y.: Wave-front reconstruction from a sequence of interferograms recorded at different planes. Opt. Lett. 30(8), 833–835 (2005)

    Article  ADS  Google Scholar 

  • Pereira, A., Sousa, M., Almeida, A.C., Ferreira, L.T., Costa, A.R., Novais-Cruz, M., Ferrás, C., Sousa, M., Sampaio, P., Belsley, M., Maiato, H.: Coherent-hybrid STED: high contrast subdiffraction imaging using a bi-vortex depletion beam. Opt. Express 27(6), 8092–8111 (2019)

    Article  ADS  Google Scholar 

  • Peterson, I., Abbey, B., Putkunz, C.T., Vine, D.J., van Riessen, G.A., Cadenazzi, G.A., Balaur, E., Ryan, R., Quiney, H.M., McNulty, I., Peele, A.G., Nugent, K.A.: Nanoscale Fresnel coherent diffraction imaging tomography using ptychography. Opt. Express 20(22), 24678–24685 (2012)

    Article  ADS  Google Scholar 

  • Robinson, I., Harder, R.: coherent X-ray diffraction imaging of strain at the nanoscale. Nat. Mater. 8, 291–298 (2009)

    Article  ADS  Google Scholar 

  • Rodenburg, J.M., Faulkner, H.M.L.: A phase retrieval algorithm for shifting illumination. Appl. Phys. Lett. 85(20), 4795–4797 (2004)

    Article  ADS  Google Scholar 

  • Umul, Y.Z.: The method of transition boundary for the solution of diffraction problems. Opt. Quant. Electron. 51(6), 181 (2019)

    Article  Google Scholar 

  • Zheng, G., Horstmeyer, R., Yang, C.: Wide-field, high-resolution Fourier ptychographic microscopy. Nat Photonics 7, 739–745 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61975044), Open Fund Project Foundation of Guangdong Provincial Key Laboratory of Modern Geometric and Mechanical Metrology Technology (SCMKF201804), and Talent Launch Fund of Nanjing University of Information Science and Technology (No. 2017R050), Jiangsu Province “Double Plan”. The authors are indebted to the anonymous reviewer for his valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengjun Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Tan, C., Song, Z. et al. A coherent diffraction imaging by using an iterative phase retrieval with multiple patterns at several directions. Opt Quant Electron 52, 29 (2020). https://doi.org/10.1007/s11082-019-2149-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-2149-5

Keywords

Navigation