Skip to main content
Log in

DFT study of optical properties of MoS2 and WS2 compared to spectroscopic results on liquid phase exfoliated nanoflakes

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We calculate the dielectric function within the framework of the random-phase approximation (RPA) based on DFT ground-state calculations, starting from eigenvectors and eigenvalues. The final goal of our theoretical work is a comparison to corresponding experimental data. We compare our computational results with optical measurements on \(\hbox {MoS}_2\) and \(\hbox {WS}_2\) nanoflakes. \(\hbox {MoS}_2\) and \(\hbox {WS}_2\) were exfoliated by ultrasonic treatment in high-boiling point organic solvent and characterized using UV–VIS spectrophotometry. We find that DFT-RPA yields a good, computationally inexpensive first approximation of the imaginary part of the dielectric function, although excitonic effects require more complex code and extra computing power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baugher, B.W.H., et al.: Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nano 9(4), 262–267 (2014)

    Article  Google Scholar 

  • Brener, N.E.: Random-phase-approximation dielectric function for diamond, with local field effects included. Phys. Rev. B 12(4), 1487–1492 (1975)

    Article  ADS  Google Scholar 

  • Britnell, L., et al.: Strong light-matter interactions in heterostructures of atomically thin films. Science 340(6138), 1311–1314 (2013)

    Article  ADS  Google Scholar 

  • Butler, S.Z., et al.: Challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4), 2898–2926 (2013)

    Article  Google Scholar 

  • Coleman, J.N., et al.: Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017), 568–571 (2011)

    Article  ADS  Google Scholar 

  • Ghader, D., et al.: The electronic band structures and optical absorption spectra for incommensurate twisted few-layers graphene. arXiv:1504.01347v1 (2015)

  • Giannozzi, P., et al.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009). http://www.quantum-espresso.org

  • Grimme, S.: Semiempirical GGA-type density functional constructed with a longrange dispersion correction. J. Comp. Chem. 27(15), 1787–1799 (2006)

    Article  Google Scholar 

  • He, X.: Strain engineering in monolayer \(\text{ WS }_2\), \(\text{ MoS }_2\), and the \(\text{ WS }_2\)/\(\text{ MoS }_2\) heterostructure. Apl. Phys. Lett. 109(17), 173105 (2016)

    Article  ADS  Google Scholar 

  • Huang, G.Q.: Dynamical stability and superconductivity of Li-intercalated bilayer \(\text{ MoS }_2\): A first-principles prediction. Phys. Rev. B 93(10), 104511 (2016)

    Article  ADS  Google Scholar 

  • Koppens, F.H.L., et al.: Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nano 9, 780–793 (2014)

    Article  Google Scholar 

  • Krack, M.: Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theor. Chem. Acc. 114(1–3), 145–152 (2005)

    Article  Google Scholar 

  • Kumar, A., et al.: A first principle comparative study of electronic and optical properties of 1HMoS2 and 2HMoS2. Mat. Chem. Phys. 135, 755–761 (2012)

    Article  Google Scholar 

  • Li, Y., et al.: Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: \(\text{ MoS }_2\), \(\text{ MoSe }_2\), \(\text{ WS }_2\), and \(\text{ WSe }_2\). Phys. Rev. B 90(20), 205422 (2014)

    Article  ADS  Google Scholar 

  • Li, W., et al.: Broadband optical properties of large-area monolayer CVD molybdenum disulfide. Phys. Rev. B 90(19), 195434 (2014)

    Article  ADS  Google Scholar 

  • Li, Da-Hai, et al.: Dielectric functions and critical points of crystalline \(\text{ WS }_2\) ultrathin films with tunable thickness. Phys. Chem. Chem. Phys. 19, 12022 (2017)

    Article  Google Scholar 

  • Liu, G.-B., et al.: Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 88(8), 085433 (2013)

    Article  ADS  Google Scholar 

  • Liu, H.-L., et al.: Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry. Appl. Phys. Lett. 105, 20 (2014)

    Google Scholar 

  • Lu, N., et al.: Twisted MX\(_2\)/\(\text{ MoS }_2\) heterobilayers: effect of van der Waals interaction on the electronic structure. Nanoscale 9, 19131–19138 (2017)

    Article  Google Scholar 

  • Mak, K.F., et al.: Tightly bound trions in monolayer \(\text{ MoS }_2\). Nat. Mater. 12(3), 207–211 (2013)

    Article  ADS  Google Scholar 

  • Matković, A., et al.: Enhanced sheet conductivity of LangmuirBlodgett assembled graphene thin films by chemical doping. 2D Mater. 3(1), 015002 (2016)

    Article  Google Scholar 

  • Molina-Sanchez, A., et al.: Effect of spin-orbit interaction on the optical spectra of single-layer, double-layer, and bulk \(\text{ MoS }_2\). Phys. Rev. B. 88(4), 045412 (2013)

    Article  ADS  Google Scholar 

  • Molina-Sanchez, A., et al.: Vibrational and optical properties of MoS2: from monolayer to bulk. Surf. Sci. Rep. 70(4), 554–586 (2015)

    Article  ADS  Google Scholar 

  • Panajotović, R., et al.: Modifications of Lipid/2D-Material Heterostructures by SEM, Book of Abstracts, SPIG 2016, 182–185 (2016)

  • Pešić, J., et al.: Ab-initio study of the optical properties of the Li-intercalated graphene and \(\text{ MoS }_2\). Opt Quant Electron 48, 368 (2016)

    Article  Google Scholar 

  • Pospischil, A., et al.: Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat. Nano 9(4), 257–261 (2014)

    Article  Google Scholar 

  • Rasmussen, F.A.: Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. J. Phys. Chem. C 119, 13169–13183 (2015)

    Article  Google Scholar 

  • Ross, J., et al.: Electrically tunable excitonic light-emitting diodes based on monolayer WSe\(_2\) p-n junctions. Nat. Nano 9(4), 268–272 (2014)

    Article  Google Scholar 

  • Shanavas, K.V., et al.: Effective tight-binding model for MX\(_2\) under electric and magnetic fields. Phys. Rev. B 91(23), 235145 (2015)

    Article  ADS  Google Scholar 

  • Shi, H.: Quasiparticle band structures and optical properties of strained monolayer \(\text{ MoS }_2\) and \(\text{ WS }_2\). Phys. Rev. B 87(15), 155304 (2013)

    Article  ADS  Google Scholar 

  • Szczesniak, D., et al.: Complex band structures of transition metal dichalcogenide monolayers with spin-orbit coupling effects. J. Phys. Condens. Matter 28(35), 355301 (2016)

    Article  Google Scholar 

  • Szczesniak, R.: Metallization and superconductivity in Ca-intercalated bilayer \(\text{ MoS }_2\). J. Phys. Chem. Solids 111, 254–257 (2017)

    Article  ADS  Google Scholar 

  • Szczesniak, R., Durajski, A.P., Jarosik, M.W.: Strong-coupling superconductivity induced by calcium intercalation in bilayer transition-metal dichalcogenides. Front. Phys. 13(2), 137401 (2018)

    Article  Google Scholar 

  • Tomašević-Ilić, T., et al.: Transparent and conductive films from liquid phase exfoliated graphene. Opt. Quant. Electron. 48, 319 (2016)

    Article  Google Scholar 

  • Tompkins, H.G., McGahan, W.A.: Spectroscopic ellipsometry and reflectometry: a users guide. Wiley, New York (1999)

    Google Scholar 

  • Vujin, J., et al.: Physico-Chemical Characterization Of Lipid-2d-Materials Self-Assembly For Biosensors, Book of Abstracts RAD 2016, 58 (2016)

  • Wang, Q.H., et al.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nano 7, 699–712 (2012)

    Article  Google Scholar 

  • Xu, X., et al.: Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014)

    Article  Google Scholar 

  • Zhang, J.-J.: Strain-enhanced superconductivity of MoX\(_2\)(X=S or Se) bilayers with Na intercalation. Phys. Rev. B 93(15), 155430 (2016)

    Article  ADS  Google Scholar 

  • Zhu, Z.Y., Cheng, Y.C., Schwingenschlogl, U.: Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 84(15), 153402 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Serbian MPNTR through Project OI 171005 and by Qatar National Research Foundation through Projects NPRP 7-665-1-125. DFT calculations are performed using computational resources at Johannes Kepler University, Linz, Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Pešić.

Additional information

Topical Collection on Focus on Optics and Bio-photonics, Photonica 2017.

Guest Edited by Jelena Radovanovic, Aleksandar Krmpot, Marina Lekic, Trevor Benson, Mauro Pereira, Marian Marciniak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pešić, J., Vujin, J., Tomašević-Ilić, T. et al. DFT study of optical properties of MoS2 and WS2 compared to spectroscopic results on liquid phase exfoliated nanoflakes. Opt Quant Electron 50, 291 (2018). https://doi.org/10.1007/s11082-018-1553-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1553-6

Keywords

Navigation