Skip to main content
Log in

Photonic crystal narrow filters with two neighboring waveguides and a semiconducting point defect

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A tunable filter is demonstrated based on a squared lattice two-dimensional photonic crystal. The filter is formed by a single semiconducting point defect and two neighboring waveguides. Modal properties of the defect modes and the transmittance of the proposed system are analyzed using supercell method and finite difference time domain method, respectively. We show that there is a narrow pass band for each temperature between 218 and 240 Kelvin. The peak of the pass band transmittance and the frequency can be highly tunable with the temperature of an intrinsic semiconducting point defect. Also, we have showed that the frequency and temperature of the desired high transmitted filter do not sensitive on the cavity size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akahane, Y., Asano, T., Song, B.S., Noda, S.: High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2004)

    Article  ADS  Google Scholar 

  • Barvestani, J.: Analytical investigation of one-dimensional photonic crystals with a dielectric-superconducting pair defect. Opt. Commun. 284, 231–235 (2011)

    Article  ADS  Google Scholar 

  • Barvestani, J., Rezaei, E., Soltani Vala, A.: Tunability of waveguide modes in two-dimensional photonic crystals based on superconducting materials. Opt. Commun. 297, 74–78 (2013)

    Article  ADS  Google Scholar 

  • Barvestani, J., Dehghan, S., Soltani Vala, A.: Temperature tunability of cavity-semiconducting waveguide coupling in a two-dimensional photonic crystal. Photon. Nanostruct. Fundam. Appl. 12(5), 482–486 (2014)

    Article  ADS  Google Scholar 

  • Belkin, M.A., Wang, Q.J., Pflugl, C., Belyanin, A., Khanna, S.P., Davies, A.G., Linfield, E.H., Capasso, F.: High-temperature operation of terahertz quantum cascade laser sources. IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009)

    Article  Google Scholar 

  • Berman, O.L., Lozovik, Y.E., Eiderman, S.L., Coalson, R.D.: Superconducting photonic crystals: numerical calculations of the band structure. Phys. Rev. B 74, 092505.1–092505.3 (2006)

    Article  ADS  Google Scholar 

  • Carr, G.L., Martin, M.C., McKinney, W.R., Jordan, K., Neil, G.R., Williams, G.P.: High-power terahertz radiation from relativistic electrons. Nature 420, 153–156 (2002)

    Article  ADS  Google Scholar 

  • Chen, Q., Zhang, X.C.: Semiconductor dynamic aperture for near-field terahertz wave imaging. IEEE J. Sel. Top. Quantum Electron. 7, 608–614 (2001)

    Article  Google Scholar 

  • Chen, Q., Jiang, Z., Xu, G.X., Zhang, X.C.: Near-field terahertz imaging with a dynamic aperture. Opt. Lett. 25, 1122–1124 (2000)

    Article  ADS  Google Scholar 

  • Chen, C.Y., Hsieh, C.F., Lin, Y.F., Pan, R.P., Pan, C.L.: Magnetically tunable room-temperature 2π liquid crystal terahertz phase shifter. Opt. Express 12, 2625–2630 (2004)

    Article  ADS  Google Scholar 

  • Chen, C.Y., Pan, C.L., Hsieh, C.F., Lin, Y.F., Pan, R.P.: Liquid-crystal-based terahertz tunable Lyot filter. Appl. Phys. Lett. 88, 101107.1–101107.3 (2006)

    Google Scholar 

  • Chan, W.L., Deibel, J., Mittleman, D.M.: Imaging with terahertz radiation. Rep. Prog. Phys. 70, 1325–1380 (2007)

    Article  ADS  Google Scholar 

  • da Costa, D.B., Yacoub, M.D.: Dual-hop transmissions with semi-blind relays over Nakagami-m fading channels. Electron. Lett. 44, 214–216 (2008)

    Article  Google Scholar 

  • Federici, J.F., Schulkin, B., Huang, F., Gary, D., Barat, R., Oliveira, F., Zimdars, D.: THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond. Sci. Technol. 20, S266–S280 (2005)

    Article  ADS  Google Scholar 

  • Ferguson, B., Zhang, X.C.: Materials for terahertz science and technology. Nat. Mater. 1, 26–33 (2002)

    Article  ADS  Google Scholar 

  • Halevi, P., Ramos-Mendieta, F.: Tunable photonic crystals with semiconducting constituents. Phys. Rev. Lett. 85(9), 1875–1878 (2000)

    Article  ADS  Google Scholar 

  • Hashemi, R., Barvestani, J.: Superconducting point defect in a two-dimensional photonic crystal. J. Supercond. Nov. Magn. 27, 371–377 (2014)

    Article  Google Scholar 

  • Hung, H.C., Wu, C.J., Chang, S.J.: Terahertz temperature-dependent defect mode in a semiconductor-dielectric photonic crystal. J. Appl. Phys. 110, 093110.1–093110.6 (2011)

    Article  Google Scholar 

  • Inoue, M., Fujikawa, R., Baryshev, A., Khanikaev, A., Lim, P.B., Uchida, H., Aktsipetrov, O., Fedyanin, A., Murzina, T., Granovsky, A.: Magnetophotonic crystals. J. Phys. D Appl. Phys. 39, R151–R161 (2006)

    Article  ADS  Google Scholar 

  • Joannopoulos, J.D., Meade, R.D., Winn, J.N.: Molding the Flow of Light. Princeton University Press, Princeton (1995)

    MATH  Google Scholar 

  • Kawano, Y.: Terahertz detectors: quantum dots enable integrated terahertz imager. Laser Focus World 45, 45–47 (2009)

    Google Scholar 

  • Li, H.H.: Refractive index of silicon and germanium and its wavelength and temperature derivatives. J. Phys. Chem. Ref. Data 9(3), 561–658 (1980)

    Article  ADS  Google Scholar 

  • Lin, S.Y., Chow, E., Hietala, V., Villeneuve, P.R., Joannopoulos, J.D.: Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal. Science 282, 274–276 (1998)

    Article  ADS  Google Scholar 

  • Liu, H.B., Plopper, G., Earley, S., Chen, Y., Ferguson, B., Zhang, X.C.: Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy. Biosens. Bioelectron. 22, 1075–1080 (2007)

    Article  Google Scholar 

  • Loffler, T., Bauer, T., Siebert, K.J., Roskos, H.G., Fitzgerald, A., Czasch, S.: Terahertz dark-field imaging of biomedical tissue. Opt. Express 9, 616–621 (2001)

    Article  ADS  Google Scholar 

  • Lyubchanskii, I.L., Dadoenkova, N.N., Lyubchanskii, M.I., Shapovalov, E.A., Rasing, T.: Magnetic photonic crystals. J. Phys. D Appl. Phys. 36, R277–R287 (2003)

    Article  ADS  Google Scholar 

  • McCall, S.L., Platzman, P.M., Dalichaouch, R., Smith, D., Schultz, S.: Microwave propagation in two-dimensional dielectric lattices. Phys. Rev. Lett. 67, 2017–2020 (1991)

    Article  ADS  Google Scholar 

  • Okamura, S., Mochiduki, Y., Motohara, H., Shiosaki, T.: Fabrication of ferroelectric photonic crystals. Integr. Ferroelectr. 69, 303–313 (2005)

    Article  Google Scholar 

  • Ozbay, E., Michel, E., Tuttle, G., Biswas, R., Ho, K.M., Bostak, J., Bloom, D.M.: Terahertz spectroscopy of three-dimensional photonic band-gap crystals. Opt. Lett. 19, 1155–1157 (1994)

    Article  ADS  Google Scholar 

  • Ramos-Mendieta, F., Halevi, P.: Surface electromagnetic waves in two-dimensional photonic crystals: effect of the position of the surface plane. Phys. Rev. B 59, 15112–15120 (1999)

    Article  ADS  Google Scholar 

  • Sakoda, K.: Optical Properties of Photonic Crystals. Springer, Berlin (2005)

    Google Scholar 

  • Sychev, F.Y., Murzina, T.V., Kim, E.M., Aktsipetrov, O.A.: Ferroelectric photonic crystals based on nanostructured lead zirconate titanate. Phys. Solid State 47, 150–152 (2005)

    Article  ADS  Google Scholar 

  • Takeda, H., Yoshino, K.: Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature superconductors. Phys. Rev. B 67, 245109.1–245109.6 (2003)

    ADS  Google Scholar 

  • Tsai, T.R., Chen, C.Y., Pan, R.P., Pan, C.L., Zhang, X.C.: Electrically controlled room temperature terahertz phase shifter with liquid crystal. IEEE Microw. Wirel. Compon. Lett. 14, 77–79 (2004)

    Article  Google Scholar 

  • Velev, O.D., Jede, T.A., Lobo, R.F., Lenhoff, A.M.: Porous silica via colloidal crystallization. Nature (London) 389, 447–448 (1997)

    Article  ADS  Google Scholar 

  • Xu, J.Z., Zhang, X.C.: Terahertz wave reciprocal imaging. Appl. Phys. Lett. 88, 151107.1–151107.3 (2006)

    Google Scholar 

  • Zhang, X., Tian, H., Ji, Y.: Group index and dispersion properties of photonic crystal waveguides with circular and square air-holes. Opt. Commun. 283, 1768–1772 (2010)

    Article  ADS  Google Scholar 

  • Zhong, H., Sanchez, A.R., Zhang, X.C.: Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system. Opt. Express 14, 9130–9141 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamal Barvestani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghan, S., Barvestani, J. Photonic crystal narrow filters with two neighboring waveguides and a semiconducting point defect. Opt Quant Electron 49, 315 (2017). https://doi.org/10.1007/s11082-017-1143-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1143-z

Keywords

Navigation