Skip to main content
Log in

Theoretical study of amplified spontaneous emission in Ne-like Se X-ray laser: spectral linewidth and gain coefficient

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A theoretical study for the spectral linewidth behavior of the Se X-ray laser at 206.4 Å has been made to obtain the intrinsic linewidth. For a Se target of 6.3 cm in length it is shown that the amplified spontaneous emission (ASE) initiates at the threshold length of z th  = 0.13 cm. The method gives an excellent agreement with the measurements, leading to 44 mÅ intrinsic linewidth for Se X-ray lasers at this wavelength. The calculation is also extended for another Se X-ray transition at 209.6 Å. We further confirm that the calculated linewidth follows a Voigt profile and its sensitivity to the collision broadening is examined. For the approach the geometrically dependent gain coefficient (GDGC) model is used. The results of the deduced gain parameters obtained from the experiment related to the target of 6.3 cm in length is used to calculate the gain profile explaining gain coefficients for samples of different excitation lengths such as 1.12 and 2.24 cm in length corresponding to the first report on the Se X-ray laser. The plot of gain coefficient versus target length for different measurements confirms that the GDGC model is able to unify Se X-ray lasers. Finally, a summary of the past reported analyses for different types of self terminating lasers will be given, where it further verifies the validity of the GDGC model to be used in different types of laser media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen, L., Peters, G.I.: Amplified spontaneous emission III. Intensity and saturation. J. Phys. A: Gen. Phys. 4, 564–573 (1971)

    Article  ADS  Google Scholar 

  • Banic, J., Efthimiopoulos, T., Stoicheff, B.P.: Gain and saturation intensity measurements of a mode-locked KrF oscillator-amplifier. Appl. Phys. Lett. 37, 686–688 (1980)

    Article  ADS  Google Scholar 

  • Bo, Z., Yan-Bing, H., Feng, T., Zhi-Dong, L., Xiao-Jun, L., Bing, H., Wen-Bin, W.: Amplified spontaneous emission from metal-backed poly[2-methoxy-5-(2′-ethylhexyloxy)-1, 4-phenylenevinylene] film. Chin. Phys. B 20, 077803 (2011)

    Article  ADS  Google Scholar 

  • Casperson, L.W., Yariv, A.: Spectral narrowing in high-gain lasers. IEEE J. Quantum Electron. 8, 80–85 (1972)

    Article  ADS  Google Scholar 

  • Cauble, R., Da Silva, L.B., Barbee Jr, T.W., Celliers, P., Decker, C., London, R.A., Moreno, J.C., Trebes, J.E., Wan, A.S., Weber, F.: Simultaneous measurement of local gain and electron density in X-ray lasers. Science 273, 1093–1096 (1996)

    Article  ADS  Google Scholar 

  • Dal Negro, L., Bettotti, P., Cazzanelli, M., Pacifici, D., Pavesi, L.: Applicability conditions and experimental analysis of the variable stripe length method for gain measurements. Opt. Commun. 229, 337–348 (2004)

    Article  ADS  Google Scholar 

  • Ding, P., Mitryukovskiy, S., Houard, A., Oliva, E., Couairon, A., Mysyrowicz, A., Liu, Y.: Backward lasing of air plasma pumped by circularly polarized femtosecond pulses for the sake of rempte sensing (BLACK). Opt. Exp. 22, 29964–29977 (2014)

    Article  ADS  Google Scholar 

  • Fitzsimmons, W.A., Anderson, L.W., Riedhauser, C.E., Vrtilek, J.M.: Experimental and theoretical investigation of the nitrogen laser. IEEE J. Quantum Electron. 12, 624–633 (1976)

    Article  ADS  Google Scholar 

  • Frantz, L.M., Nodvik, J.S.: Theory of pulse propagation in a laser amplifier. J. Appl. Phys. 34, 2346–2349 (1963)

    Article  ADS  Google Scholar 

  • Ganiel, U., Hardy, A., Neumann, G., Treves, D.: “Amplified spontaneous emission and signal amplification in dye-laser systems”. IEEE J. Quantum Electron. 11, 881–892 (1975)

    Article  ADS  Google Scholar 

  • Griem, H.R.: Plasma spectroscopy in internal confinement fusion and soft X-ray laser research. Phys. Fluids B 4, 2346–2361 (1992)

    Article  ADS  Google Scholar 

  • Hariri, A., Sarikhani, S.: A two dimensional theoretical model for describing gain coefficient in N2-lasers and the model validity for CVL and excimer lasers. Opt. Commun. 284, 2153–2163 (2011)

    Article  ADS  Google Scholar 

  • Hariri, A., Sarikhani, S.: Theoretical amplification of z-dependent gain coefficient to describe amplified spontaneous emission. Opt. Lett. 37, 1127–1129 (2012a)

    Article  ADS  Google Scholar 

  • Hariri, A., Sarikhani, S.: A new approach for describing amplified spontaneous emission in a KrF excimer laser using z-dependency of gain-coefficient. Laser Phys. 22, 1861–1873 (2012b)

    Article  ADS  Google Scholar 

  • Hariri, A., Sarikhani, S.: Amplified spontaneous emission in N2 lasers: saturation and bandwidth study. Opt. Commun. 318, 152–161 (2014a)

    Article  ADS  Google Scholar 

  • Hariri, A., Sarikhani, S.: Study of the amplified spontaneous emission spectral width and gain coefficient for a KrF laser in unsaturated and saturated conditions. Laser Phys. Lett. 11, 015003 (2014b)

    Article  ADS  Google Scholar 

  • Hariri, A., Sarikhani, S.: Theoretical study of amplified spontaneous emission intensity and bandwidth reduction in polymer. Chin. Phys. B 24, 043201 (2015)

    Article  ADS  Google Scholar 

  • Hariri, A., Jaberi, M., Ghoreyshi, S.: Nitrogen lasers: optical devices of variable gain coefficient. Opt. Commun. 281, 3841–3852 (2008)

    Article  ADS  Google Scholar 

  • Harvey, E.C., Hooker, C.J., Key, M.H., Kidd, A.K., Lister, J.M.D., Shaw, M.J., Leland, W.T.: Picosecond gain and saturation measurements in a KrF laser amplifier depumped by amplified spontaneous emission. J. Appl. Phys. 70, 5238–5245 (1991)

    Article  ADS  Google Scholar 

  • Hide, F., Schwartz, B.J., Díaz-García, M.A., Heeger, A.J.: Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals. Chem. Phys. Lett. 256, 424–430 (1996)

    Article  ADS  Google Scholar 

  • Holden, P.B., Healy, S.B., Lightbody, M.T.M., Pert, G.J., Plowes, J.A., Kingston, A.E., Robertson, E., Lewis, C.L.S., Neely, D.: A computational investigation of the neon-like germanium collisionally pumped laser. J. Phys. B: At. Mol. Opt. Phys. 27, 341–367 (1994)

    Article  ADS  Google Scholar 

  • Janulewicz, K.A., Healy, S.B., Pert, G.J.: Spectral line transfer modeling in collisionally pumped X-ray lasers. J. Phys. B: At. Mol. Phys. 28, 5237–5250 (1995)

    Article  ADS  Google Scholar 

  • King, R.E., Pert, G.J., McCabe, S.P., Simms, P.A., MacPhee, A.G., Lewis, C.L.S., Keenan, R., O’Rourke, R.M.N., Tallents, G.J., Pestehe, S.J., Strati, F., Neely, D., Allott, R.: Saturated X-ray lasers at 196 and 73 Å pumped by a picosecond traveling-wave excitation. Phys. Rev. A 64, 053810 (2001)

    Article  ADS  Google Scholar 

  • Koch, J.A., MacGowan, B.J., Da Silva, L.B., Matthews, D.L., Underwood, J.H., Batson, P.J., Mrowka, S.: Observation of gain-narrowing and saturation behavior in Se X-ray laser line profiles. Phys. Rev. Lett. 68, 3291–3294 (1992)

    Article  ADS  Google Scholar 

  • Koch, J.A., MacGowan, B.J., Da Silva, L.B., Matthews, D.L., Underwood, J.H., Batson, P.J., Lee, R.W., London, R.A., Mrowka, S.: Experimental and theoretical investigation of neonlike selenium X-ray laser spectral linewidths and their variation with amplification. Phys. Rev. A 50, 1877–1898 (1994)

    Article  ADS  Google Scholar 

  • Kühnle, G., Teubner, U., Szatmári, S.: Amplified spontaneous emission in short-pulse excimer amplifiers. Appl. Phys. B 51, 71–74 (1990)

    Article  ADS  Google Scholar 

  • Lehmberg, R.H., Giuliani, J.L.: Simulation of amplified spontaneous emission in high gain KrF laser amplifiers. J. Appl. Phys. 94, 31–43 (2003)

    Article  ADS  Google Scholar 

  • Leonard, D.A.: Saturation of the molecular nitrogen second positive laser transition. Appl. Phys. Lett. 7, 4–6 (1965)

    Article  ADS  Google Scholar 

  • Linford, G.J., Peressini, E.R., Sooy, W.R., Speath, M.L.: Very long lasers. Appl. Opt. 13, 379–390 (1974)

    Article  ADS  Google Scholar 

  • MacGowan, B.J., Da Silva, L.B., Fields, D.J., Keane, C.J., Koch, J.A., London, R.A., Matthews, D.L., Maxon, S., Mrowka, S., Osterheld, A.L., Scofield, J.H., Shimkaveg, G., Trebes, J.E., Walling, R.S.: Short wavelength X-ray laser research at the Lawrence Livermore National Laboratory. Phys. Fluids B 4, 2326–2337 (1992)

    Article  ADS  Google Scholar 

  • Maeda, H., Yariv, A.: Narrowing and rebroadening of amplified spontaneous emission in high gain laser media. Phys. Lett. 43A, 383–385 (1973)

    Article  ADS  Google Scholar 

  • Marowsky, G., Tittle, F.K., Wilson, W.L., Frenkel, E.: Laser gain measurements by means of amplified spontaneous emission. Appl. Opt. 19, 138–143 (1980)

    Article  ADS  Google Scholar 

  • Matthews, D.L., Hagelstein, P.L., Rosen, M.D., Eckart, M.J., Ceglio, N.M., Hazi, A.U., Medecki, H., MacGowan, B.J., Trebes, J.E., Whitten, B.L., Campbell, E.M., Hatcher, C.W., Hawryluk, A.M., Kauffman, R.L., Pleasance, L.D., Rambach, G., Scofield, J.H., Stone, G., Weaver, T.A.: Demonstration of a soft X-ray amplifier. Phys. Rev. Lett. 54, 110–113 (1985)

    Article  ADS  Google Scholar 

  • McGehee, M.D., Heeger, A.J.: Semiconducting (conjugated) polymers as materials for solid-state lasers. Adv. Mater. 12, 1655–1668 (2000)

    Article  Google Scholar 

  • Mitryukovskiy, S., Liu, Y., Ding, P., Houard, A., Mysyrowicz, A.: Backward stimulated radiation from filaments in nitrogen gas and air pumped bycircularly polarized 800 nm femtosecond laser pulses. Opt. Exp. 22, 12750–12759 (2014)

    Article  ADS  Google Scholar 

  • Okuda, I., Tomie, T., Owadano, Y.: Transient gain enhancement for picosecond pulses by suppressing intra-cavity ASE in a large-aperture KrF laser amplifier. Appl. Phys. B: Laser and Optics 67, 529–532 (1998)

    Article  ADS  Google Scholar 

  • Olivero, J.J., Longbothum, R.L.: Empirical fits to the Voigt line width: a brief review. J. Quant. Spectrosc. Radiat. Trasfer 17, 233–236 (1977)

    Article  ADS  Google Scholar 

  • Parks, J.H., Rao, D.R., Javan, A.: A high-resolution study of the C3Пu → B3Пg(0, 0) stimulated transitions in N *2 . Appl. Phys. Lett. 13, 142–1444 (1968)

    Article  ADS  Google Scholar 

  • Pert, G.J.: The hybrid model and its application for studying free expansion. J. Fluid Mech. 131, 401–426 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Pert, G.J.: Output characteristics of amplified-spontaneous-emission lasers. J. Opt. Soc. Am. B 11, 1425–1435 (1994)

    Article  ADS  Google Scholar 

  • Rocca, J.J.: Table-top soft X-ray lasers. Rev. Sci. Instrum. 70, 3799–3827 (1999)

    Article  ADS  Google Scholar 

  • Sarikhani, S., Hariri, A.: Nitrogen lasers, optical devices of variable gain coefficient: theoretical considerations. Opt. Commun. 283, 118–127 (2010)

    Article  ADS  Google Scholar 

  • Sasaki, A., Ueda, K.-I., Takuma, H., Kasuya, K.: Amplified spontaneous emission in high power KrF lasers. J. Appl. Phys. 65, 231–235 (1989)

    Article  ADS  Google Scholar 

  • Schwamb, D.H., Smith, S.R.: Spectral narrowing and saturation-induced rebroadening in 3.51-μm xenon laser amplifiers. Phys. Rev. A 21, 896–901 (1980)

    Article  ADS  Google Scholar 

  • Sebban, S., Mocek, T., Ros, D., Upcraft, L., Balcou, Ph, Haroutunian, R., Grillon, G., Rus, B., Klisnick, A., Carillon, A., Jamelot, G., Valentin, C., Rousse, A., Rousseau, J.P., Notebaert, L., Pittman, M., Hulin, D.: Demonstration of a ni-like Kr optical-field-ionization collisional soft X-ray laser at 32.8 nm. Phys. Rev. Lett. 89, 253901 (2002)

    Article  ADS  Google Scholar 

  • Shaklee, K.L., Leheny, R.F.: Direct determination of optical gain in semiconductor crystals. Appl. Phys. Lett. 18, 475–477 (1971)

    Article  ADS  Google Scholar 

  • Sheridan, A.K., Turnbull, G.A., Safonov, A.N., Samuel, I.D.W.: Tuneability of amplified spontaneous emission through control of the waveguide-mode structure in conjugated polymer films. Phys. Rev. B 62, R11929–R11932 (2000)

    Article  ADS  Google Scholar 

  • Shlyaptsev, V.N., Gerusov, A.V., Vinogradov, A.V., Rocca, J.J., Cortazar, O.D., Tomasel, F., Szapiro, B.: Modeling of fast capillary discharge for collisionally excited soft X-ray lasers; comparison with experiments. SPIE 2012, 99–110 (1993)

    ADS  Google Scholar 

  • Strati, F., Tallents, G.J.: Analytical modeling of group-velocity effects in saturated soft-X-ray lasers pumped with a picosecond traveling-wave excitation. Phys. Rev. A 64, 013807 (2001)

    Article  ADS  Google Scholar 

  • Suckewer, S., Skinner, C.H., Milchberg, H., Keane, C., Voorhees, D.: Amplification of stimulated soft-X-ray emission in a confined plasma column. Phys. Rev. Lett. 55, 1753–1756 (1985)

    Article  ADS  Google Scholar 

  • Svelto, O.: Principles of Lasers, 5th edn. Springer, Berlin (2010)

    Book  Google Scholar 

  • Svelto, O., Taccheo, S., Svelto, C.: Analysis of amplified spontaneous emission: some corrections to the Linford formula. Opt. Commun. 149, 277–282 (1998)

    Article  ADS  Google Scholar 

  • Tallents, G.J.: The physics of soft X-ray lasers pumped by electron collisions in laser plasmas. J. Phys. D Appl. Phys. 36, R259–R276 (2003)

    Article  ADS  Google Scholar 

  • Watanabe, S., Sato, T., Kashiwagi, H.: Small signal gain measurement of KrF and XeF laser amplifiers. Opt. Commun. 22, 143–146 (1977)

    Article  ADS  Google Scholar 

  • Yariv, A.: Quantum Electronics, 3rd edn. Wiley, Hoboken (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hariri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hariri, A., Sarikhani, S. Theoretical study of amplified spontaneous emission in Ne-like Se X-ray laser: spectral linewidth and gain coefficient. Opt Quant Electron 48, 214 (2016). https://doi.org/10.1007/s11082-016-0487-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0487-0

Keywords

Navigation