Skip to main content
Log in

Design and analysis of a multichannel transceiver for high-speed optical interconnects

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we designed a multichannel transceiver for high-speed optical interconnect applications. The proposed multichannel transceiver is designed in 0.13 µm CMOS technology. The multichannel transceiver consists of 4-channel transmitter (Tx) and 4-channel receiver (Rx). The simulated Tx has a 3-dB BW of 5.85 GHz with a voltage gain of 35 dB and the measured 3-dB BW is 5.20 GHz. The simulated Rx has the 3-dB BW of 5.95 GHz with a transimpedance gain of 80 dBΩ and the measured 3-dB BW of Rx is 5.25 GHz. To improve frequency operation of Rx, transimpedance amplifier (TIA) active feedback has been applied. Utilization of an active feedback in TIA significantly improves the frequency operation, where 3-dB BW has been improved from 3.27 to 11 GHz with transimpedance gain of 65 dBΩ. Furthermore, to improve the output light of performance temperature sensing circuit has also been integrated in the same silicon substrate with transceiver chip to provide stable output light power temperature range of −30 ~ 100 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Agrawal, G.P.: Fiber-optic Communication Systems. Wiley, New Jersey (1997)

    Google Scholar 

  • Analui, B., Hajimiri, A.: Bandwidth enhancement for transimpedance amplifier. IEEE J. Solid Stage Circuits 39(8), 1263–1270 (2004)

    Article  Google Scholar 

  • Application note: Modulating VCSELs, Finisar (2007)

  • Cheng, W.-H., Hung, W.-C., Lee, C.-H., Hwang, G.-L., Jou, W.-S., Wu, T.-L.: Low-cost and low-electromagnetic-interference packaging of optical transceiver modules. J. Lightwave Technol. 22(9), 2177–2183 (2004)

    Article  ADS  Google Scholar 

  • Gao, W., Li, Z., Song, J., Zhang, X., Chen, F., Liu, F., Zhou, Y., Li, J., Xiang, H., Zhou, J., Liu, S., Wang, Y., Wang, Q., Li, B., Shi, Z., Cao, L., Wan, L.: An electrical design and fabrication of a 12-channel optical transceiver with SiP packaging technology. In: Proceedings of Electronic Components and Technology Conference, pp. 2006–2011. 1–4 June 2010

  • Han, J.-W., Choi, B.-Y., Seo, M.-K., Yun, J.-S., Lee, D.-M., Kim, T.-W., Eo, Y.-S., Park, S.M.: A 20-Gb/s transformer-based current-mode optical receiver in 0.13 µm CMOS. In: IEEE Transactions on Circuits and Systems-II: Express Briefs, 57(5), pp. 348–352 (2010)

  • Huang, H.Y., Chien, J.C., Lu, L.H.: A 10-Gb/s inductorless CMOS limiting amplifier with third-order interleaving active feedback. IEEE J. Solid Stage Circuits 42(5), 1111–1120 (2007)

    Article  Google Scholar 

  • Li, Z., Gao, W., Song, J., Li, B., Wan, L.: Packaging and assembly of 12-channel parallel optical transceiver module. In: Proceedings of Electronic Packaging Technology and High Density Packaging, pp. 28–30. 10–13 Aug 2009

  • Liu, F., Wan, L., Zhou, J., Li, B., Du, T., Gao, W., Wan, F.: Design optimization and performance verification of multichannel high-speed ptical transceiver package. In: Proceedings of Electronics Packaging Technology Conference, pp. 153–157. 7–9 Dec 2011

  • Mutig, A., Hofmann, W., Blokhin, S.A., Wolf, P., Moser, P., Nadtochiy, A.M., Bimberg, D., Lott, J.A.: High speed high temperature stable 980 nm VCSELs operating error-free at 25 Gbit/s up to 85°C for short reach optical interconnects. In: Proceedings of SPIE, vol. 7952, no. 79520H, pp. 1–11. 10 Feb 2011

  • Oh, W.S., Park, K.Y.: A 12.5-Gb/s Optical transmitter using an auto-power and modulation control. J. Opt. Soc. Korea 13(4), 434–438 (2009)

    Article  Google Scholar 

  • Park, S.M., Yoo, H.J.: 1.25-Gb/s regulated cascode CMOS transimpedance amplifier for gigabit Ethernet applications. IEEE J. Solid State Circuits 39, 112–121 (2004)

    Article  Google Scholar 

  • Razavi, B.: Design of Integrated Circuits for Optical Communications. Mc Graw Hill, New York (2003)

    Google Scholar 

  • Ritter, M.B., Vlasov, Y., Kash, J.A., Benner, A.: Optical technologies for data communication in large parallel systems. J. Instrum. 6, 1–12 (2011)

    Article  Google Scholar 

  • Sangirov, J., Park, T.-W., Ukaegbu, I.A., Lee, T.-W., Park, H.-H.: On-chip temperature compensation for optical transmitter modules. Electron. Lett. 49(2), 202–204 (2013a)

    Article  Google Scholar 

  • Sangirov, J., Ukaegbu, I.A., Lee, T.-W., Cho, M.H., Park, H.-H.: 10 Gbps transimpedance amplifier-receiver for optical interconnects. J. Opt. Soc. Korea 17(1), 44–49 (2013b)

    Article  Google Scholar 

  • Schow, C.L., Doany, F.E., Rylyakov, A.V., Lee, B.G., Jahnes, C.V., Kwark, Y.H., Baks, C.W., Kuchta, D.M., Kash, J.A.: A 24-Channel, 300 Gb/s, 8.2 pJ/bit, full-duplex fiber-coupled optical transceiver module based on a single “Holey” CMOS IC. J. Lightwave Technol. 29(4), 542–553 (2011)

    Article  ADS  Google Scholar 

  • Yin, X., Bauwelinck, J., Qiu, X.-Z., Vandewege, J.: A second feedforward optical power control scheme for automotive VCSEL drivers. IEEE Photonics Technol. Lett. 22(22), 1683–1685 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Rakib-Uddin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangirov, J., Rakib-Uddin, M., Sangirov, G. et al. Design and analysis of a multichannel transceiver for high-speed optical interconnects. Opt Quant Electron 48, 72 (2016). https://doi.org/10.1007/s11082-015-0316-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-015-0316-x

Keywords

Navigation