Skip to main content
Log in

Lax pair, rogue-wave and soliton solutions for a variable-coefficient generalized nonlinear Schrödinger equation in an optical fiber, fluid or plasma

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, a variable-coefficient generalized nonlinear Schrödinger equation, which can be used to describe the nonlinear phenomena in the optical fiber, fluid or plasma, is investigated. Lax pair, higher-order rogue-wave and multi-soliton solutions, Darboux transformation and generalized Darboux transformation are obtained. Wave propagation and interaction are analyzed: (1) The Hirota and Lakshmanan–Porsezian–Daniel coefficients affect the propagation velocity and path of each one soliton; three types of soliton interaction have been attained: the bound state, one bell-shape soliton’s catching up with the other and two bell-shape soliton head-on interaction. Multi-soliton interaction is elastic. (2) The Hirota and Lakshmanan–Porsezian–Daniel coefficients affect the propagation direction of the first-step rogue waves and interaction range of the higher-order rogue waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Nonlinear-evolution equations of physical significance. Phys. Rev. Lett. 31, 1251–1256 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • Ablowitz, M.J., Clarkson, P.A.: Solitons. Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  • Agrawal, G.P.: Nonlinear Fiber Optics. Academic, New York (1995)

    MATH  Google Scholar 

  • Akhmediev, N., Eleonskii, V.M., Kulagin, N.E.: Exact first-order solutions of the nonlinear Schroinger equation. Theor. Math. Phys. 72, 809–818 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M.: Rogue waves and rational solutions of the nonlinear Schördinger equation. Phys. Rev. E 80, 026601 (2009)

    Article  ADS  MATH  Google Scholar 

  • Ames, W.: Nonlinear Partial Differential Equation. Academic, New York (1967)

    MATH  Google Scholar 

  • Ankiewicz, A., Devine, N., Akhmediev, N.: Are rogue waves robust against perturbations? Phys. Lett. A 373, 3997–4000 (2009)

    Article  ADS  MATH  Google Scholar 

  • Ankiewicz, A., Soto-Crespo, J.M., Akhmediev, N.: Rogue waves and rational of the Hirota equation. Phys. Rev. E 81, 046602 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  • Ankiewicz, A., Akhmediev, N.: Higher-order integrable evolution equation and its soliton solutions. Phys. Lett. A 378, 358–361 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  • Benes, N., Kasman, A., Young, K.: On decompositions of the KdV 2-Soliton. J. Nonlinear Sci. 16, 179–200 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Chabchoub, A., Hoffmann, N.P., Akhmediev, N.: Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204502 (2011)

    Article  ADS  Google Scholar 

  • Christov, I., Christov, C.I.: Physical dynamics of quasi-particles in nonlinear wave equations. Phys. Lett. A 372, 841–848 (2008)

    Article  ADS  MATH  Google Scholar 

  • Daniel, M., Kavitha, L., Amuda, R.: Soliton spin excitations in an anisotropic Heisenberg ferromagnet with octupole-dipole interaction. Phys. Rev. B 59, 13774 (1999)

    Article  ADS  Google Scholar 

  • Hasegawa, A.: Optical Soliton Theory and Its Applications in Communication. Springer, Berlin (2003)

    Google Scholar 

  • Hesegawa, A., Kodama, Y.: Solitons in Optical Communication. Oxford University Press, Oxford (1995)

    Google Scholar 

  • Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14, 805–809 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Jia, H.X., Ma, J.Y., Liu, Y.J., Liu, X.F.: Rogue-wave solutions of a higher-order nonlinear Schrödinger equation for inhomogeneous Heisenberg ferromagnetic system. Indian J. Phys. 89, 281–287 (2015)

    Article  ADS  Google Scholar 

  • Lakshmanan, M., Porsezian, K., Daniel, M.: Effect of discreteness on the continuum limit of the Heisenberg spin chain. Phys. Lett. A 133, 483–488 (1988)

    Article  ADS  Google Scholar 

  • Palacios, S.L., Fernández-Díaz, J.M.: Black optical solitons for media with parabolic nonlinearity law in the presence of fourth order dispersion. Opt. Commun. 178, 457–460 (2000)

    Article  ADS  Google Scholar 

  • Porsezian, K., Daniel, M., Lakshmanan, M.: On the integrability aspects of the one-dimensional classical continuum isotropic biquadratic Heisenberg spin chain. J. Math. Phys. 33, 1807–1816 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Porsezian, K.: Completely integrable nonlinear Schrödinger type equations on moving space curves. Phys. Rev. E 55, 3785–3789 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  • Porsezian, K., Nakkeeran, K.: Optical soliton propagation in an erbium doped nonlinear light guide with higher order dispersion. Phys. Rev. Lett. 74, 2941 (1995)

    Article  ADS  Google Scholar 

  • Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 405, 1054–1057 (2007)

    Article  ADS  Google Scholar 

  • Sun, W.R., Tian, B., Jiang, Y., Zhen, H. L.: Optical rogue waves associated with the negative coherent coupling in an isotropic medium. Phys. Rev. E 91, 023205 (2015a)

    Article  ADS  Google Scholar 

  • Sun, W.R., Tian, B., Zhen, H.L., Sun, Y.: Breathers and rogue waves of the fifth-order nonlinear Schrodinger equation in the Heisenberg ferromagnetic spin chain. Nonlinear Dyn 81, 725–732 (2015b)

    Article  MathSciNet  Google Scholar 

  • Wen, L., Li, L., Li, Z.D., Song, S.W., Zhang, X.F., Liu, W.M.: Matter rogue wave in Bose-Einstein condensates with attractive atomic interaction. Eur. Phys. D 64, 473–478 (2011)

    Article  ADS  Google Scholar 

  • Xie, X.Y., Tian, B., Sun, W.R., Sun, Y.: Rogue-wave solutions for the Kundu-Eckhaus equation with variable coefficients in an optical fiber. Nonlinear Dyn 81, 1349–1354 (2015a)

    Article  MathSciNet  Google Scholar 

  • Xie, X.Y., Tian, B., Sun, W.R., Sun, Y., Liu, D.Y.: Soliton collisions for a generalized variable-coefficient coupled Hirota-Maxwell-Bloch system for an erbium-doped optical fiber. J. Mod. Opt 62, 1374–1380 (2015b)

    Article  ADS  Google Scholar 

  • Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62–69 (1972)

    ADS  MathSciNet  Google Scholar 

  • Zhen, H.L., Tian, B., Wang Y.F., Liu, D.Y.: Soliton solutions and chaotic motions for the Langmuir wave in the plasma. Phys. Plasmas 22, 032307 (2015a)

    Article  ADS  Google Scholar 

  • Zhen, H.L., Tian, B., Sun, Y., Chai, J.: Solitons and chaos of the Klein-Gordon-Zakharov in a high-ferquency plasma. Phys. Plasmas 22, 102304 (2015b)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We express our sincere thanks to all the members of our discussion group for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant No. 11272023, by the Open Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications) under Grant No. IPOC2013B008, and by the Foundation of Hebei Education Department of China under Grant No. QN2015051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Tian Gao.

Appendix

Appendix

The second-order rogue-wave solutions of Eq. (1):

$$\begin{aligned} \psi ^{[2]}= & {} \big (e^{\frac{7 i x}{\gamma }} \big (384 x^5 (6 t \alpha -13 i \gamma ) \gamma \big (36 \alpha ^2+169 \gamma \big )^2+64 x^6 \big (36 \alpha ^2+169 \gamma \big )^3+24 x \gamma ^5 \\ &\,\big (96 t^5 \alpha -208 i t^4 \gamma -208 t^3 \alpha \gamma +696 i t^2 \gamma ^2-234 t \alpha \gamma ^2+291 i \gamma ^3\big )+\gamma ^6 \\ &\,\big (64 t^6-144 t^4 \gamma -180 t^2 \gamma ^2+45 \gamma ^3\big )-12 x^2 \gamma ^4 \big (9984 i t^3 \alpha \gamma -6720 i t \alpha \gamma ^2 \\ &-\,16 t^4 \big (180 \alpha ^2+169 \gamma \big )+15 \gamma ^2 \big (100 \alpha ^2+401 \gamma \big )+24 t^2 \gamma \big (204 \alpha ^2+1261 \gamma \big )\big ) \\ &+\,192 x^3 \gamma ^3 \big ({-}52 i t^2 \gamma \big (108 \alpha ^2+169 \gamma \big )-6 t \alpha \gamma \big (252 \alpha ^2+3107 \gamma \big )-i \gamma ^2 \\ &\, \big (612 \alpha ^2+10309 \gamma \big )+24 t^3 \big (60 \alpha ^3+169 \alpha \gamma \big )\big )-48 x^4 \gamma ^2 \big (2496 i t \alpha \gamma \big (36 \alpha ^2+169 \gamma \big ) \\ &-\,4 t^2 \big (6480 \alpha ^4+36504 \alpha ^2 \gamma +28561 \gamma ^2\big )+\gamma \big (10800 \alpha ^4+175032 \alpha ^2 \gamma \\ &+\,173563 \gamma ^2\big )\big )\big )\big )/\big (\sqrt{\gamma } \big (2304 t x^5 \alpha \gamma \big (36 \alpha ^2+169 \gamma \big )^2+64 x^6 \big (36 \alpha ^2+169 \gamma \big )^3 \\ &+\,48 t x \alpha \gamma ^5 \big (48 t^4-8 t^2 \gamma +51 \gamma ^2\big )+\gamma ^6 \big (64 t^6+48 t^4 \gamma +108 t^2 \gamma ^2+9 \gamma ^3\big ) \\ &+\,1152 t x^3 \alpha \gamma ^3 \big (4 t^2 \big (60 \alpha ^2+169 \gamma \big )-\gamma \big (108 \alpha ^2+1079 \gamma \big )\big )\\&+12 x^2 \gamma ^4 \big ({-}360 t^2 \gamma \big (4 \alpha ^2+39 \gamma \big )+16 t^4 \big (180 \alpha ^2+169 \gamma \big )+3 \gamma ^2 \big (556 \alpha ^2+5379 \gamma \big )\big ) \\ &+\,48 x^4 \gamma ^2 \big (4 t^2 \big (6480 \alpha ^4+36504 \alpha ^2 \gamma +28561 \gamma ^2\big )+13 \gamma \big ({-}432 \alpha ^4-2232 \alpha ^2 \gamma \\ &+\,30589 \gamma ^2\big )\big )\big )\big ), \end{aligned}$$

The third-order rogue-wave solutions of Eq. (1):

$$\begin{aligned} \psi ^{[3]}= & {} -\big (e^{\frac{7 i x}{\gamma }} \big (49152 x^{11} (6 t \alpha -13 i \gamma ) \gamma \big (36 \alpha ^2+169 \gamma \big )^5+4096 x^{12} \big (36 \alpha ^2+169 \gamma \big )^6 \\ &+\,\gamma ^{12} \big (4096 t^{12}-18432 t^{10} \gamma -57600 t^8 \gamma ^2-172800 t^6 \gamma ^3+226800 t^4 \gamma ^4 \\ &+\,113400 t^2 \gamma ^5-14175 \gamma ^6\big )+48 x \gamma ^{11} \big (6144 t^{11} \alpha -13312 i t^{10} \gamma -33280 t^9 \alpha \gamma \\ &+\,111360 i t^8 \gamma ^2-57600 t^7 \alpha \gamma ^2+1920 i t^6 \gamma ^3-187200 t^5 \alpha \gamma ^3+165600 i t^4 \gamma ^4 \\ &+\,286200 t^3 \alpha \gamma ^4-936900 i t^2 \gamma ^5+141750 t \alpha \gamma ^5-137025 i \gamma ^6\big )+24 x^2 \gamma ^{10} \\ &\, \big ({-}1597440 i t^9 \alpha \gamma +10690560 i t^7 \alpha \gamma ^2-5760 t^6 \big (356 \alpha ^2-4545 \gamma \big ) \gamma ^2 \\ &+\,10828800 i t^5 \alpha \gamma ^3-7200 t^4 \big (1596 \alpha ^2-1993 \gamma \big ) \gamma ^3+34675200 i t^3 \alpha \gamma ^4 \\ &-\,14536800 i t \alpha \gamma ^5+675 \big (1116 \alpha ^2-8837 \gamma \big ) \gamma ^5+1024 t^{10} \big (396 \alpha ^2+169 \gamma \big ) \\ &-\,3840 t^8 \gamma \big (612 \alpha ^2+1261 \gamma \big )+2700 t^2 \gamma ^4 \big (3700 \alpha ^2+33247 \gamma \big )\big )+960 x^3 \\ &\,\gamma ^9 \big ({-}576 t^5 \alpha \big (684 \alpha ^2-30817 \gamma \big ) \gamma ^2+720 i t^2 \big (13620 \alpha ^2-6893 \gamma \big ) \gamma ^4 \\ &-\,3328 i t^8 \gamma \big (324 \alpha ^2+169 \gamma \big )-4608 t^7 \alpha \gamma \big (252 \alpha ^2+1261 \gamma \big )+15930 t \alpha \gamma ^4 \\ &\,\big (156 \alpha ^2+2231 \gamma \big )-1440 t^3 \alpha \gamma ^3 \big (2732 \alpha ^2+9741 \gamma \big )+1440 i t^4 \gamma ^3 \\ &\,\big (3108 \alpha ^2+10933 \gamma \big )+256 i t^6 \gamma ^2 \big (21924 \alpha ^2+31603 \gamma \big )+45 i \gamma ^5 \\ &\,\big (11676 \alpha ^2+748199 \gamma \big )+1536 t^9 \big (132 \alpha ^3+169 \alpha \gamma \big )\big )-6144 x^{10} \gamma ^2 \\ &\,\big (36 \alpha ^2+169 \gamma \big )^3 \big (6240 i t \alpha \gamma \big (36 \alpha ^2+169 \gamma \big )-4 t^2 \big (14256 \alpha ^4+73008 \alpha ^2 \gamma \\ &+\,28561 \gamma ^2\big )+\gamma \big (21168 \alpha ^4+382824 \alpha ^2 \gamma +305383 \gamma ^2\big )\big )+240 x^4 \gamma ^8 \\ &\,\big (15360 i t^3 \alpha \big (2700 \alpha ^2-1651 \gamma \big ) \gamma ^3-638976 i t^7 \alpha \gamma \big (108 \alpha ^2+169 \gamma \big ) \\ &+\,34560 i t \alpha \gamma ^4 \big (6940 \alpha ^2+36839 \gamma \big )+12288 i t^5 \alpha \gamma ^2 \big (21924 \alpha ^2+86021 \gamma \big ) \\ &+\,256 t^8 \big (42768 \alpha ^4+109512 \alpha ^2 \gamma +28561 \gamma ^2\big )-1792 t^6 \gamma \big (32400 \alpha ^4 \\ &+\,272376 \alpha ^2 \gamma +134017 \gamma ^2\big )+480 t^4 \gamma ^2 \big ({-}3888 \alpha ^4+1687176 \alpha ^2 \gamma \\ &+\,164437 \gamma ^2\big )-720 t^2 \gamma ^3 \big (141552 \alpha ^4+1348968 \alpha ^2 \gamma +1587599 \gamma ^2\big ) \\ &+\,45 \gamma ^4 \big (970320 \alpha ^4+19226664 \alpha ^2 \gamma +42713269 \gamma ^2\big )\big )-61440 x^9 \gamma ^3 \\ &\,\big (36 \alpha ^2+169 \gamma \big )^2 \big (52 i t^2 \gamma \big (11664 \alpha ^4+60840 \alpha ^2 \gamma +28561 \gamma ^2\big )+6 t \alpha \gamma \\ &\,\big (19440 \alpha ^4+362232 \alpha ^2 \gamma +656903 \gamma ^2\big )+i \gamma ^2 \big ({-}112752 \alpha ^4-961272 \alpha ^2 \gamma \\ &+\,5969249 \gamma ^2\big )-24 t^3 \big (4752 \alpha ^5+28392 \alpha ^3 \gamma +28561 \alpha \gamma ^2\big )\big )+1536 x^5 \gamma ^7 \\ &\,\big ({-}4160 i t^6 \gamma \big (27216 \alpha ^4+85176 \alpha ^2 \gamma +28561 \gamma ^2\big )+600 t^3 \alpha \gamma ^2 \big (14256 \alpha ^4 \\ &+\,1350216 \alpha ^2 \gamma +1161199 \gamma ^2\big )+720 i t^4 \gamma ^2 \big (438480 \alpha ^4+3089320 \alpha ^2 \gamma \\ &+\,1627977 \gamma ^2\big )-450 t \alpha \gamma ^3 \big (106704 \alpha ^4+1771944 \alpha ^2 \gamma +4105049 \gamma ^2\big ) \\ &-\,96 t^5 \alpha \gamma \big (789264 \alpha ^4+9533160 \alpha ^2 \gamma +13500565 \gamma ^2\big )-180 i t^2 \gamma ^3 \big (684720 \alpha ^4 \\ &+\,10797800 \alpha ^2 \gamma +42206567 \gamma ^2\big )+45 i \gamma ^4 \big (2545200 \alpha ^4+41227640 \alpha ^2 \gamma \\ &+\,154878191 \gamma ^2\big )+384 t^7 \big (42768 \alpha ^5+182520 \alpha ^3 \gamma +142805 \alpha \gamma ^2\big )\big )-256 x^6 \gamma ^6 \\ &\,\big (179712 i t^5 \alpha \gamma \big (27216 \alpha ^4+141960 \alpha ^2 \gamma +142805 \gamma ^2\big )-11520 i t^3 \alpha \gamma ^2 \\ &\,\big (789264 \alpha ^4+8213400 \alpha ^2 \gamma +11681449 \gamma ^2\big )+12960 i t \alpha \gamma ^3 \big (396144 \alpha ^4 \\ &+\,6663800 \alpha ^2 \gamma +29182751 \gamma ^2\big )-64 t^6 \big (10777536 \alpha ^6+68992560 \alpha ^4 \gamma \\ &+\,107960580 \alpha ^2 \gamma ^2+24134045 \gamma ^3\big )+720 t^4 \gamma \big (3592512 \alpha ^6+57198960 \alpha ^4 \gamma \\ & +\,155152140 \alpha ^2 \gamma ^2+55322657 \gamma ^3\big )-180 t^2 \gamma ^2 \big (2099520 \alpha ^6+108714960 \alpha ^4 \gamma \\ & +\,301817100 \alpha ^2 \gamma ^2+848461627 \gamma ^3\big )+135 \gamma ^3 \big (2376000 \alpha ^6+66895920 \alpha ^4 \gamma \\ & +\,480320620 \alpha ^2 \gamma ^2+2572161917 \gamma ^3\big )\big )+6144 x^7 \gamma ^5 \big ({-}15 i \gamma ^3 \big (26827200 \alpha ^6 \\ & +\,500020560 \alpha ^4 \gamma +2244182772 \alpha ^2 \gamma ^2-191958481 \gamma ^3\big )-1040 i t^4 \gamma \big (979776 \alpha ^6 \\ & +\,7665840 \alpha ^4 \gamma +15422940 \alpha ^2 \gamma ^2+4826809 \gamma ^3\big )+120 i t^2 \gamma ^2 \big (9471168 \alpha ^6 \\ & +\,128859120 \alpha ^4 \gamma +313599780 \alpha ^2 \gamma ^2+62748517 \gamma ^3\big )+270 t \alpha \gamma ^2 \big (171072 \alpha ^6 \\ & +\,7562160 \alpha ^4 \gamma +40799980 \alpha ^2 \gamma ^2+135293457 \gamma ^3\big )-80 t^3 \alpha \gamma \big (5178816 \alpha ^6 \\ & +\,102958128 \alpha ^4 \gamma +444892500 \alpha ^2 \gamma ^2+459289441 \gamma ^3\big )+96 t^5 \big (1539648 \alpha ^7 \\ & +\,13798512 \alpha ^5 \gamma +35986860 \alpha ^3 \gamma ^2+24134045 \alpha \gamma ^3\big )\big )+3840 x^8 \gamma ^4 \\ &\, \big ({-}39936 i t^3 \alpha \gamma \big (36 \alpha ^2+169 \gamma \big )^2 \big (108 \alpha ^2+169 \gamma \big )+16 t^4 \big (36 \alpha ^2+169 \gamma \big )^2 \big (42768 \alpha ^4 \\ & +\,109512 \alpha ^2 \gamma +28561 \gamma ^2\big )+768 i t \alpha \gamma ^2 \big (4059072 \alpha ^6+65926224 \alpha ^4 \gamma \\ & +\,206667396 \alpha ^2 \gamma ^2-62748517 \gamma ^3\big )+3 \gamma ^2 \big (27433728 \alpha ^8+1302448896 \alpha ^6 \gamma \\ &+\,9723935520 \alpha ^4 \gamma ^2+3364714288 \alpha ^2 \gamma ^3-245264645717 \gamma ^4\big )-72 t^2 \gamma \\ &\, \big (22954752 \alpha ^8+549110016 \alpha ^6 \gamma +3394628640 \alpha ^4 \gamma ^2+6730799504 \alpha ^2 \gamma ^3 \\ & +\,2447192163 \gamma ^4\big )\big )\big )\big )/\big (\sqrt{\gamma } \big (294912 t x^{11} \alpha \gamma \big (36 \alpha ^2+169 \gamma \big )^5+4096 x^{12} \\ &\, \big (36 \alpha ^2+169 \gamma \big )^6+96 t x \alpha \gamma ^{11} \big (3072 t^{10}-1280 t^8 \gamma +17280 t^6 \gamma ^2+73440 t^4 \gamma ^3 \\ & -\,15300 t^2 \gamma ^4+19575 \gamma ^5\big )+\gamma ^{12} \big (4096 t^{12}+6144 t^{10} \gamma +34560 t^8 \gamma ^2+149760 t^6 \gamma ^3 \\ & +\,54000 t^4 \gamma ^4+48600 t^2 \gamma ^5+2025 \gamma ^6\big )+24 x^2 \gamma ^{10} \big (21600 t^4 \big (316 \alpha ^2-561 \gamma \big ) \gamma ^3 \\ & -\,172800 t^8 \gamma \big (4 \alpha ^2+13 \gamma \big )+1024 t^{10} \big (396 \alpha ^2+169 \gamma \big )+1920 t^6 \gamma ^2 \big (948 \alpha ^2+5627 \gamma \big ) \\ & -\,2700 t^2 \gamma ^4 \big (972 \alpha ^2+10993 \gamma \big )+675 \gamma ^5 \big (1996 \alpha ^2+30607 \gamma \big )\big )+5760 t x^3 \alpha \gamma ^9 \\ &\, \big ({-}6912 t^6 \gamma \big (12 \alpha ^2+65 \gamma \big )+256 t^8 \big (132 \alpha ^2+169 \gamma \big )+240 t^2 \gamma ^3 \big (1732 \alpha ^2+3359 \gamma \big ) \\ & +\,288 t^4 \gamma ^2 \big (444 \alpha ^2+4067 \gamma \big )-45 \gamma ^4 \big (3148 \alpha ^2+59907 \gamma \big )\big )+368640 t x^9 \alpha \gamma ^3 \\ &\, \big (36 \alpha ^2+169 \gamma \big )^2 \big (4 t^2 \big (4752 \alpha ^4+28392 \alpha ^2 \gamma +28561 \gamma ^2\big )+\gamma \big ({-}14256 \alpha ^4 \\ & -\,118872 \alpha ^2 \gamma +371293 \gamma ^2\big )\big )+6144 x^{10} \gamma ^2 \big (36 \alpha ^2+169 \gamma \big )^3 \big (4 t^2 \big (14256 \alpha ^4 \\ & +\,73008 \alpha ^2 \gamma +28561 \gamma ^2\big )+\gamma \big ({-}15984 \alpha ^4-90792 \alpha ^2 \gamma +951301 \gamma ^2\big )\big ) \\ &+\,9216 t x^5 \alpha \gamma ^7 \big (20 t^2 \gamma ^2 \big (289008 \alpha ^4+3943080 \alpha ^2 \gamma -5354765 \gamma ^2\big )+64 t^6 \\ &\, \big (42768 \alpha ^4+182520 \alpha ^2 \gamma +142805 \gamma ^2\big )-16 t^4 \gamma \big (462672 \alpha ^4+4422600 \alpha ^2 \gamma \\ & +\,4932265 \gamma ^2\big )+45 \gamma ^3 \big (204048 \alpha ^4+3111560 \alpha ^2 \gamma +19527885 \gamma ^2\big )\big )+240 x^4 \gamma ^8 \\ &\, \big (1440 t^4 \gamma ^2 \big (22896 \alpha ^4+245400 \alpha ^2 \gamma -396305 \gamma ^2\big )-3328 t^6 \gamma \big (9072 \alpha ^4+68040 \alpha ^2 \gamma \\ & +\,28223 \gamma ^2\big )+256 t^8 \big (42768 \alpha ^4+109512 \alpha ^2 \gamma +28561 \gamma ^2\big )+720 t^2 \gamma ^3 \big (115920 \alpha ^4 \\ & +\,1071864 \alpha ^2 \gamma +5490797 \gamma ^2\big )+45 \gamma ^4 \big ({-}82608 \alpha ^4-316248 \alpha ^2 \gamma +35623589 \gamma ^2\big )\big ) \\ & +\,256 x^6 \gamma ^6 \big (45 \gamma ^3 \big (12094272 \alpha ^6+213073200 \alpha ^4 \gamma +1200264780 \alpha ^2 \gamma ^2-143365235 \gamma ^3\big ) \\ &+\,64 t^6 \big (10777536 \alpha ^6+68992560 \alpha ^4 \gamma +107960580 \alpha ^2 \gamma ^2+24134045 \gamma ^3\big )-240 t^4 \gamma \\ &\, \big (6858432 \alpha ^6+79606800 \alpha ^4 \gamma +156997620 \alpha ^2 \gamma ^2+30817319 \gamma ^3\big )+540 t^2 \gamma ^2 \\ &\,\big (1570752 \alpha ^6+31071600 \alpha ^4 \gamma +76350820 \alpha ^2 \gamma ^2+372920977 \gamma ^3\big )\big )+12288 t x^7 \alpha \gamma ^5 \\ &\,\big ({-}200 t^2 \gamma \big (699840 \alpha ^6+9552816 \alpha ^4 \gamma +27286740 \alpha ^2 \gamma ^2+10767497 \gamma ^3\big )+48 t^4 \\ &\,\big (1539648 \alpha ^6+13798512 \alpha ^4 \gamma +35986860 \alpha ^2 \gamma ^2+24134045 \gamma ^3\big )+15 \gamma ^2 \big (2659392 \alpha ^6 \\ &+\,79785648 \alpha ^4 \gamma +623457900 \alpha ^2 \gamma ^2+3109750241 \gamma ^3\big )\big )+3840 x^8 \gamma ^4 \\ &\,\big (16 t^4 \big (36 \alpha ^2+169 \gamma \big )^2 \big (42768 \alpha ^4+109512 \alpha ^2 \gamma +28561 \gamma ^2\big )-72 t^2 \gamma \big (16236288 \alpha ^8 \\ &+\,254741760 \alpha ^6 \gamma +926958240 \alpha ^4 \gamma ^2+243568208 \alpha ^2 \gamma ^3-815730721 \gamma ^4\big )+3 \gamma ^2 \\ &\,\big (40870656 \alpha ^8+1826489088 \alpha ^6 \gamma +23770674720 \alpha ^4 \gamma ^2+146083802800 \alpha ^2 \gamma ^3 \\ &+\,162851708851 \gamma ^4\big )\big )\big )\big ). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, DW., Gao, YT., Xue, L. et al. Lax pair, rogue-wave and soliton solutions for a variable-coefficient generalized nonlinear Schrödinger equation in an optical fiber, fluid or plasma. Opt Quant Electron 48, 76 (2016). https://doi.org/10.1007/s11082-015-0290-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-015-0290-3

Keywords

Navigation